可以通过所谓的单分子方法(例如染色质纤维自显影术[1],动态分子梳理[2],透射电子显微镜[3-5],原子力显微镜[6]和磁性Tweeezer [7,8]来分析具有不同拓扑的DNA分子的DNA分子。DNA特性很难通过计算机模拟[9-13]研究实验上的DNA特性。二维(2D)琼脂糖凝胶电泳是当前可用的最佳实验方法,可以同时鉴定具有不同拓扑的DNA分子[例如,超涂层(SC),catenated(catss),打结(cats)和打结(KN)分子(kN)分子]。该技术由在不同条件下进行的两个连续电泳分离组成,并在两个正交方向上运行(4-8)。在相对较低的电压(〜1 v/cm)下,在低度(〜0.4%)琼脂糖凝胶电泳中解析了第一维。第二维垂直于第一个维度,因此将整个凝胶的整个泳道用作凝胶井的替换,但在高度(〜1%)琼脂糖凝胶电泳(〜5–6.6 V/cm)处的高度(〜1%)琼脂糖凝胶电泳。2D凝胶最初是由Bell和Byers设计的,用于分离分支和线性分子[14],并且早期注意到该方法也可以成功地应用于研究DNA拓扑。2D凝胶被调整以同时检查具有不同DNA拓扑的成千上万个分子,例如SC形式,KN形式,部分复制的形式(命名为前蛋白酶),有或没有反向的叉子,完全重复的Catenanes(Cats)(cats)和复制中间体(RIS),以及包含针(RIS)(RIS)(RIS)[4,6,6,6,6,6,6,6,6,6,6,6,6,6,58]。2D琼脂糖凝胶电泳已广泛用于研究拓扑异构酶体外和体内的活性[29,30]。另外,2D凝胶也可以用作富集特定DNA分子的样品的制备方法,以后可以通过不同的技术进行检查[4,6,18,19,31,32]。质粒是研究DNA拓扑模型的宝贵工具。质粒的优势包括它们的易于分离,以及在纯化的DNA样品中定量测量DNA超串联,打结和搭配的能力[33]。在这里,我们提出了一种协议,其中2D凝胶用于分析三个
补充材料。材料与方法文库制备和 Miseq (Illumina®) 测序使用文库制备指南 (LPG) ( https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html ) 中报告的 Illumina 接头序列和引物悬垂部分(正向和反向)扩增 16S rRNA 基因的 460 bp V3-V4 高变区。使用以下 PCR 反应扩增每个 DNA 样本:2.5 µl 5 ng/ µl DNA、5 µl 引物正向悬垂部分、5 µl 引物反向悬垂部分、12.5 µl 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems)。使用 LPG 中报告的循环程序。 PCR 产物在 2% 琼脂糖凝胶(GellyPhor LE,Euroclone SPA,意大利米兰)上电泳分离,并用 GelRed™ 核酸凝胶染料(Biotium,美国加利福尼亚州海沃德)染色。通过紫外光透射仪观察预期长度的 PCR 产物的存在。然后,用 NucleoMag 试剂盒纯化 DNA 扩增子以清理和选择 NGS 文库制备反应的大小(Macherey-Nagel),并按照制造商的说明使用 Illumina® DNA/RNA UD Indexes Tagmentation 试剂盒对每个样本进行索引。在验证和定量之前,对文库进行进一步纯化。在 Agilent 4150 TapeStation D1000 ScreenTape 检测仪(安捷伦科技公司)上对文库进行验证,以验证大小,而定量则使用 Qubit 4 荧光计(赛默飞世尔科技,美国)。根据 DNA 扩增子的大小,应用 Illumina LPG 中报告的公式,以 nM 为单位计算最终的 DNA 浓度。最后,将每个文库中的 5 µl 稀释 DNA 等分试样混合,以合并具有唯一索引的文库。在 Miseq 加载之前,根据 Illumina LPG 说明对合并的文库进行变性和稀释。使用 MiSeq Reagent Micro Kit v2(500 个循环)加载合并的文库,运行包括 20% PhiX 作为内部对照。生物信息学分析测序数据包含在包含带有原始读取的 FASTQ 文件的文件夹中(R1 文件包含每个样本的正向读取,R2 文件包含每个样本的反向读取),使用 FastQC(英国剑桥 Babraham Institute)进行质量检查。然后,使用 DADA2 R 包(Callahan 等人,2016 年)处理 R1 和 R2 文件以生成扩增子序列变体 (ASV)(图 1)。最终生成了 ASV 表,总结了每个样本的不同 ASV 的数量。