我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
半导体技术不断向微米和亚微米尺度发展,从而提高了器件密度并降低了功耗。许多物理现象(如自热或电流泄漏)在这样的尺度下变得非常重要,而绘制电流密度图以揭示这些特征对于现代电子学的发展具有决定性作用。然而,先进的非侵入式技术要么灵敏度低,要么空间分辨率差,并且仅限于二维空间映射。在这里,我们使用金刚石中的近表面氮空位中心来探测预开发中的多层集成电路中电流产生的奥斯特场。我们展示了电流密度三维分量的重建,其幅度低至约 ≈ 10 μA/μm 2
在染料敏化的太阳能电池(DSSC)中,光被敏化的染料吸收。当光撞击染料分子时,它会吸收光子并将其兴奋至更高的能量状态。这种激发态允许染料分子将电子注入半导体的传导带,从而产生电流。选择染料特性非常重要,因为它可以帮助提高DSSC的性能。然而,从相同批次用作染料的植物或水果的相同输出电流特性非常困难。此外,改善了制造染料敏化的太阳能电池的电性能,例如短路电流密度和效率,这是至关重要的,因为需要考虑许多实验因素。因此,要最大程度地减少材料资源的额外利用,这是由于制造不成功的风险并理想地获得更好的性能,进行基于模拟的研究对于优化DSSC的性能很重要。自由软件通用光伏设备模型(GPVDM)是一个有前途且有趣的工具,因为它的免费许可和通过图形接口易于访问,用于模拟光电设备,包括OLED,OFET和各种类型的太阳能电池。本文考虑了3-D光伏设备模型GPVDM,以模拟用不同的叶绿素染料样品以DSSC性能模拟所提出的结构。本文旨在表征基于叶绿素的DSSC的高电流密度 - 电压(J-V),并确定合适的光伏仿真软件,用于运行基于叶绿素的DSSC的模拟。最后,将结果与各种文献来源中报道的实验数据进行了比较。结果表明,对于虫丝豆糖叶(CHL E),增强的短路电流密度(JSC)为0.3556 mA cm -2,这是所测试的其他染料中最高的。模拟短路电流密度(JSC)的值与已发表论文中报道的JSC的实验结果略有不同。总而言之,GPVDM可被认为适用于建模DSSC。
6月12日2024年 — 杰杰微电子有限公司BTA04/BTB04系列/T4系列4A三端双向可控硅。描述:采用双台面技术,电流密度高;玻璃钝化...
介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
电解在 1000 mA/cm 2 电流密度下进行,电解液为 35% KOH,温度为 200~,压力为 30 atm。电解 250 小时后,由于腐蚀产物在阳极内累积,阳极孔隙率从约 45% 降至约 20%。