由于自然过程和/或人类活动而堆积在月球表面的灰尘很容易粘附在宇航服、光学设备和机械部件等物体上。这可能导致灰尘危害,而灰尘危害已被视为未来月球探索的技术挑战之一。过去几年,人们研究了几种除尘技术。这里我们介绍了一种利用电子束清除表面灰尘的新方法。最近关于静电除尘的研究表明,灰尘颗粒之间形成的微腔内二次电子或光电子的发射和吸收会导致周围颗粒上积聚大量负电荷。这些颗粒之间随后产生的排斥力会导致它们从表面释放。我们在实验中使用了细小的月球模拟颗粒(JSC-1A,直径 < 25 μ m)。清洁性能是根据电子束能量和电流密度、表面材料以及初始灰尘层厚度进行测试的。结果表明,使用优化的电子束参数(~230 eV 和 1.5 至 3 μ A/cm 2 之间的最小电流密度),在 ~100 秒的时间内,整体清洁度可达到 75 – 85%,具体取决于初始灰尘层的厚度。发现宇航服样品和玻璃表面的最大清洁度相似。未来的工作将侧重于去除最后一层灰尘颗粒以及使用紫外线 (UV) 光的替代方法。
引言由于其成熟度,可靠性和高功率密度,在国防工业中众所周知,在“一击”系统中使用的热电池是众所周知的。他们不需要充电,没有加热,没有用于运输/存储的物流约束,也没有专用的地面安装。热电池提供任何储备电池技术的最高功率密度,并且不受压力,温度,湿度等环境条件的影响。它们可用于并联或系列连接的几组电池组中,从而提供模块化。可以在发射之前激活热电池,并在无负载的“空闲时间”中安全地坐在高功率放电之前的几分钟内。拥有如此悠久的记录,热电池是支持空间和防御工业中不断增长的需求的绝佳解决方案。在国防行业的先前应用中已证明了将LAN阳极用于热电池的使用。lan由纯锂阳极组成,在机械上固定以允许实施实施,而无需将锂与另一种材料合并。由于LAN阳极的固有性能特征,它已用于需要在相对较小的电池量内进行高功率输出的应用。设计注意事项电流密度:热电池通常以1A/cm2的稳态电流密度运行,在数百毫秒内持续时间短,持续时间短的高电流脉冲为10A/cm2。解决此问题的主要手段是通过实现满足高电流需求的实际实现需要增加电池量,并具有增加电压和电池表面积的目标。
要产生电流,您需要一个用于电压的发电机,从而产生电流流量。I= C𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⸱,ΔV= r = r⸱𝐼𝐼i,而i是电流的,c𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑是电流密度,a是横截面区域,v是电压,r是电阻。将指南针放在电路上。当打开电路时,指南针是由电流 - Oersted定律偏转的。
LGA80D 和 LGA50D 的 LGA 系列占地 1 英寸(25.4 毫米)x 0.5 英寸(12.5 毫米),代表了业内最高的额定电流密度。这些创新设备提供两个独立输出,可以配置为单个输出或 2 个完全独立控制的输出。LGA80D 可以配置为两个 40A 输出或一个 80A 输出,而 LGA50D 可以配置为两个 25A 输出或一个 50A 输出。还可以通过并联设备来产生更高的额定电流轨:例如,通过并联四个 LGA80D 设备,最多可以提供 320 安培的电流作为单个电源轨。
gan/gainn非对称多量子发光二极管具有不同潜在的屏障厚度(5和15 nm),通过使用金属有机化学蒸气沉积来生长。狭窄的屏障结构改善了设备的性能,包括电致发光积分强度的超线性增加,高电流密度下效率下降的降低,波长漂移的降低,向前电压的降低以及壁插头效率的提高。这是由于量子屏障的厚度变窄,这会导致量子井之间的电场较小,量子限制性鲜明效应的弱化,跨设备活动区域的载体分布更均匀,以及电子泄漏的抑制。
1.5.1 KC 1 转子损耗 ...................................................................................... 16 1.5.2 KC 2 定子损耗 ...................................................................................... 16 1.5.3 KC 3 风阻损耗 ...................................................................................... 16 1.5.4 KC 4 转子热限制 ...................................................................................... 16 1.5.5 KC 5 冷却选项 ...................................................................................... 16 1.5.6 KC 6 转子机械限制 ............................................................................. 17 1.5.7 KC 7 扭矩惯性比 ...................................................................................... 17 1.5.8 KC 8 扭矩脉动 ...................................................................................... 17 1.5.9 KC 9 与轴承的兼容性 ............................................................................. 17 1.5.10 KC 10 高速能力 ...................................................................................... 17 1.5.11 KC 11短路行为 ................................................................................ 18 1.5.12 KC 12 机器复杂度 .............................................................................. 18 1.5.13 KC 13 电流密度 .............................................................................. 18 1.5.14 KC 14 功率密度 .............................................................................. 18
图2。(a)具有构型li | ipn -5pan |不锈钢的细胞的循环伏安法,用于-0.5 V和6 V之间的4个周期。扫描速率为0.5 mV s -1。(b)使用IPN-0PAN和IPN-5PAN作为电解质的Li | Cu不对称细胞的库仑效率测量。电流密度和容量为0.5 mA cm -2和0.5 mAh cm -2。使用IPN-0PAN(C)和IPN-5PAN(D),电解质的第1季度和50个周期的电镀和剥离过程的电压轮廓(D)。使用IPN-0PAN和IPN-5PAN的li | spe | cu细胞的(e)n 1s和(f)O 1s的lithium金属表面的XPS光谱。表面用2 kV的枪支蚀刻1分钟。
本文考虑了通过热塑性材料挤出和聚合物粉末床熔合来 3D 打印锂离子电池的能力。重点研究了由聚丙烯、LiFePO 4 作为活性材料和导电添加剂组成的正极配方,从电化学、电气、形态和机械角度彻底讨论了这两种增材制造技术的优缺点。基于这些初步结果,提出了进一步优化电化学性能的策略。通过全面的建模研究,与经典的二维平面设计相比,强调了各种复杂的三维锂离子电池结构在高电流密度下的增强电化学适用性。最后,研究了通过多材料打印选项工艺直接打印完整锂离子电池的能力。
首次尝试评估半导体天然橡胶的电荷传输特性。合成了四种不同比例的碘-橡胶复合材料,并通过电流密度-电压特性 (JV) 和阻抗谱测试了电荷传输。确定了最佳迁移率值的最佳掺杂比,并讨论了注入势垒高度对迁移率的影响。还尝试将态密度 (DOS) 与迁移率和掺杂比关联起来。在相同的环境和实验条件下,将半导体天然橡胶的传输特性与最流行的 p 型材料之一聚(3-己基噻吩-2,5-二基)(P3HT)进行了比较,以证明其作为经济高效且绿色的替代有机半导体的潜力。