测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。
摘要:本文介绍了一种 40 GHz 压控振荡器 (VCO) 和分频器链,采用意法半导体 28 nm 超薄体盒 (UTBB) 全耗尽绝缘体上硅 (FD-SOI) 互补金属氧化物半导体 (CMOS) 工艺制造,具有八层金属后道工艺 (BEOL) 选项。VCO 架构基于带有 p 型金属氧化物半导体 (PMOS) 交叉耦合晶体管的 LC 谐振腔。VCO 通过利用可通过单个控制位选择的两个连续频率调谐带,展现出 3.5 GHz 的调谐范围 (TR)。在 38 GHz 载波频率下测得的相位噪声 (PN) 分别为 - 94.3 和 - 118 dBc/Hz(频率偏移为 1 和 10 MHz)。高频分频器(频率从 40 GHz 到 5 GHz)采用三个静态 CMOS 电流模式逻辑 (CML) 主从 D 型触发器级制成。整个分频器因子为 2048。低频分频器采用工作频率为 5 GHz 的 CMOS 触发器架构。VCO 核心和分频器链的功耗分别为 18 和 27.8 mW(电源电压为 1.8 和 1 V)。使用热室在三个结温(即 − 40、25 和 125 ◦ C)下验证了电路的功能和性能。
测试和测量最后设置内存简化了测试设计,无需备用电池。内置 RS-232/RS-485 提供最大的系统灵活性,以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出允许测试许多不同的设备。半导体加工设备设计师欣赏广泛的输入范围 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令均相同。多种输出允许测试许多不同的设备。激光二极管 OVP 直接在电压显示屏上设置,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选择的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁 坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
摘要衍生焊接过程在许多情况下能够改变决定焊珠形成基本方面的现象。这些演变中的某些演变作用于电线馈电动力学。但是,在这种情况下,尚未完全探索线饲料脉动对焊珠形成因子的影响。因此,这项工作旨在检查电线进料脉动方法如何影响气体金属电弧焊接中的液滴转移以及其与熔融池的相互作用如何定义焊珠穿透。通过改变电线馈电频率而产生的磁带焊接,但保持相同水平的电弧能量和电线进料速度,电源以恒定的电压和电流模式运行。为了评估液滴转移行为,使用了高速成像。根据融合渗透比较了焊珠的几何形状。结果表明,线进料脉动频率的增加加剧了液滴的脱离频率,有可能完成稳定的金属转移,直接将其直接投射到焊接池,这有助于集中的渗透率。基于描述性模型,人们认为,由于电线饲料搏动而导致的液滴动量或动能的增加不足以证明渗透性增强的合理性。可以得出结论,电线进料动力学还可以刺激焊池中的表面张力变化,从而破坏其质量和热对流的行为,从而支持融合渗透。
• 集成 1A 电源路径线性电池充电器 – 输入电压工作范围为 3.0V 至 18.0V – 输入电压最高可耐受 25V – 可配置电池调节电压,精度为 ±0.5%,范围为 3.5V 至 4.65V,步长为 10mV – 5mA 至 1A 可配置快速充电电流 – 55mΩ BATFET 导通电阻 – 高达 2.5A 的放电电流,可支持高系统负载 – 完全可编程的 JEITA 配置文件,可在整个温度下安全充电 • 用于为系统供电和为电池充电的电源路径管理 – 除电池电压跟踪和输入直通选项外,调节系统电压范围为 4.4V 至 4.9V – 可配置的输入电流限制 – 动态电源路径管理可优化弱适配器的充电 – 可选择适配器或电池为系统供电 – 先进的系统复位机制 • 超低静态电流模式 – 电池模式下电池静态电流为 2μA – 运输模式下电池静态电流为 15nA •集成降压转换器,具有 I 2 C 和 GPIO 可编程 DVS 输出 – 系统静态电流为 0.36μA – 输出电压为 0.4V 至 1.575V,步长为 12.5mV 或输出电压为 0.4V 至 3.6V,步长为 25mV/50mV – 输出电流高达 600mA • 集成降压-升压转换器,具有 I 2 C 可编程 DVS 输出 – 系统静态电流为 0.1μA – 输出电压为 1.7V 至 5.2V,步长为 50mV – V SYS ≥ 3.0V、V BBOUT = 3.3V 时输出电流高达 600mA • 集成 I 2 C 可编程 LDO(LDO1 和 LDO2) – 静态电流为 25nA – 输出电压为 0.8V 至 3.6V,步长为 50mV – 输出电流高达 200mA – LDO1 可在运输模式下保持开启– 可配置 LDO 或旁路模式 – 专用输入引脚 • 集成故障保护以确保安全 – 输入电流限制和过压保护