开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。本文定义了 Madelung 变换的广义,以通过狄拉克方程解决与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动,可在通用量子计算机上有效实现。提出了该算法的一种变体,用于在均匀外力的情况下使用当前噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法对当前 IBM NISQ 上的相对论和非相对论流体动力学冲击进行了高分辨率(高达 N = 2 17 个网格点)数值模拟。本文证明了可以在 NISQ 上模拟流体动力学,并为使用更通用的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。在本文中,定义了 Madelung 变换的广义以通过狄拉克方程求解与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动 (DTQW),可在通用量子计算机上有效实现。提出了该算法的一种变体,以在均匀外力的情况下使用当前的噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法在当前 IBM NISQ 上执行相对论和非相对论流体动力学冲击的高分辨率(高达 N = 2 17 个网格点)数值模拟。这项工作表明可以在 NISQ 上模拟流体动力学,并为使用更一般的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
2 硬件分析 风扇是一种空气流动装置,利用由电动机通过电子或机械命令驱动的旋转叶片或叶轮 [4]。根据风扇的定义,旋转叶片和电动机是帮助风扇实现其所需功能(即空气流动)的核心部件。一般而言,风扇所包含的部件种类可能因供应商和客户的要求而有所不同。例如,风扇中可以使用有刷电机代替无刷电机,以降低成本,尽管可能会产生金属颗粒和由于金属刷退化而产生的电火花等副作用。但是,无论具体设计如何,风扇中核心部件的功能都不会改变。选择用于消费电子应用的 BLDC 风扇进行硬件分析。图 1 显示了风扇的两个核心元件;即电动机和叶片。在图 2 中,电动机被拆解成两部分:风扇外壳中的定子和转子。叶片直接安装在电动机的转子上。转子中的条形永磁体具有足够的柔韧性,可以装入转子的壳体中,并与转子产生的电磁力相互作用
2 硬件分析 风扇是一种空气流动装置,利用由电动机通过电子或机械命令驱动的旋转叶片或叶轮 [4]。根据风扇的定义,旋转叶片和电动机是帮助风扇实现其所需功能(即空气流动)的核心部件。一般而言,风扇所包含的部件种类可能因供应商和客户的要求而有所不同。例如,风扇中可以使用有刷电机代替无刷电机,以降低成本,尽管可能会产生金属颗粒和由于金属刷退化而产生的电火花等副作用。但是,无论具体设计如何,风扇中核心部件的功能都不会改变。选择用于消费电子应用的 BLDC 风扇进行硬件分析。图 1 显示了风扇的两个核心元件;即电动机和叶片。在图 2 中,电动机被拆解成两部分:风扇外壳中的定子和转子。叶片直接安装在电动机的转子上。转子中的条形永磁体具有足够的柔韧性,可以装入转子的壳体中,并与转子产生的电磁力相互作用
2 硬件分析 风扇是一种空气流动装置,利用由电动机通过电子或机械命令驱动的旋转叶片或叶轮 [4]。根据风扇的定义,旋转叶片和电动机是帮助风扇实现其所需功能(即空气流动)的核心部件。一般而言,风扇所包含的部件种类可能因供应商和客户的要求而有所不同。例如,风扇中可以使用有刷电机代替无刷电机,以降低成本,尽管可能会产生金属颗粒和由于金属刷退化而产生的电火花等副作用。但是,无论具体设计如何,风扇中核心部件的功能都不会改变。选择用于消费电子应用的 BLDC 风扇进行硬件分析。图 1 显示了风扇的两个核心元件;即电动机和叶片。在图 2 中,电动机被拆解成两部分:风扇外壳中的定子和转子。叶片直接安装在电动机的转子上。转子中的条形永磁体具有足够的柔韧性,可以装入转子的壳体中,并与转子产生的电磁力相互作用
ﺩ。ﺧﻠﻴﻞ ﺧﻠﻴﻞ1)为了获得材料的高沉积速率,源材料的蒸气压必须为______背景真空压力。1) +高于2) - 低于3) - 等于4) - 所有答案都是正确的2)在微流动器的情况下,带有梳子驱动执行器,这是一个刺激性的__________,在所需的驱动电压中,__________________________________________________________1) - 增加,增加2) - 减少,减少3) +减少,增加4) - 所有答案都是不正确的3)热电器是多个热电偶,在_________中排列,电压输出为__________。1) +平行,系列2) - 系列,平行3) - 系列4) - 平行,平行4)大多数微加速度计基于____________的原理。1) - 静电力2) - 电磁力3) - 热力4) +机械变形5)“由于过热而无法维持持续时间的驱动运动”,”这是______________________________驱动技术的主要缺点。 ___________类型是在开发中溶解的。1) +阳性2) - 负3) - 正或负4) - 所有答案都是不正确的7)硅的湿氧化通常是由于____________而被首选的。1) - 较低的成本2) - Sio2的Beter质量3) +更快的氧化4) - 所有答案都是正确的8)清洁室的班级数量越高。1) - 是。2) + false。9)扩散过程是__________的一个例子。1) - 压力驱动流2) +熵驱动的传输3) - 梯度诱导的流量
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
超脑机械传感器为测试新物理学提供了令人兴奋的途径。虽然这些传感器中的许多是为检测惯性力而定制的,但磁悬浮(Maglev)系统特别有趣,因为它们对电磁力也敏感。在这项工作中,我们建议使用磁性悬浮的超导体通过其与电磁作用的耦合来检测暗光子和轴突暗物质。几个现有的实验室实验以高频搜索这些黑暗象征的候选者,但很少有人对低于1 kHz的频率敏感(对应于深色 - 物质M dm m dm≲10-12ev)。作为机械谐振器,磁性悬浮的超导体对较低的频率敏感,因此实验室实验目前无法探索的探针参数空间也可以。暗光子和轴线暗物质可以采用振荡的磁场,该磁场驱动磁性悬浮的超导体的运动。当暗物质康普顿频率与悬浮的超导体的捕获频率匹配时,这种运动会得到共鸣。我们概述了对暗物质敏感的磁性超导体的必要模块,包括宽带和共振方案的规格。我们表明,在Hz≲f dm≲kHz频率范围内,我们的技术可以在深色photon和Axion Dark Matter的实验室探针中达到领先的灵敏度。
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。
量子场论是描述几乎所有基础物理现象的现代理论框架。这包括基本粒子物理的标准模型,其中有电磁力、弱力和强力,而且很可能以某种方式包括暗物质和引力。量子场论与量子力学有着密切的联系,历史上,当人们清楚地认识到相对论版本的量子力学不一致时,量子场论就发展成为无限多自由度的量子理论。在现代理解中,量子场论实际上是非相对论量子力学的基础,后者在极限上遵循前者。还有一种非相对论版本的量子场论,它可以描述非相对论粒子的少体物理,但也可以很好地用于描述多体物理和凝聚态物质。另一个非常有趣的联系是量子场论和统计场论之间的联系。相对论量子场论所需的许多概念只有从统计物理学的角度才能正确理解,而且,同样的概念也可用于描述随机理论,其中波动不是量子起源,而是有不同原因。这甚至超越了物理学和自然科学。相对论量子场论与群论、对称理论也有有趣的交集。具体来说,各种李群在理解基本粒子物理标准模型的现象方面起着重要作用。这里还可以提到时空对称性的后果,如守恒定律或粒子实际上的基本概念。它与(量子)信息论还有一个非常有趣的关系,目前正在更详细地探索。未来几年,很有可能对量子场动力学有进一步的了解。
