公共、放射治疗和诊断、核医学、放射学、工业辐射处理、核能、国防、空间科学和环境保护;对电离辐射与物质的基本物理相互作用进行理论和实验研究;了解辐射诱导化学转变的基本机制和
进行冠状动脉造影需要使用X射线,这是一种电离辐射,可能会造成包括癌症在内的危害。每个人都将一直暴露于电离辐射作为背景辐射,例如,四小时的飞机飞行使您接触到与胸部X射线相同的辐射剂量。进行冠状动脉造影需要相对较高的辐射剂量。如果该过程延长,则有1000个风险有一些皮肤变化,这可能会导致受影响区域变红。有10,000个癌症的机会中有一个。您的顾问心脏病专家已经考虑了这种风险,他有责任确保您的潜在利益大于增加辐射暴露的风险。执行您手术的医生将确保您的暴露能力与合理的可行。通常不建议孕妇使用冠状动脉造影。至关重要的是,如果您怀疑自己怀孕,请告知医疗团队对您的护理负责。
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度
模块 1 1 解释放射性、放射性物质和辐射产生装置之间的区别。 2 识别用于测量放射性的单位。 3 解释非电离辐射和电离辐射之间的区别。 4 识别四种类型的电离辐射。 5 说明辐射单位 rem 的含义。 6 解释职业和非职业辐射剂量之间的区别。 7 识别非职业源的平均年辐射剂量。 模块 2 1 解释急性和慢性影响之间的区别。 2 说明与产前辐射剂量相关的潜在影响。 3 识别与职业辐射剂量相关的主要风险。 4 将辐射的职业风险与工业和日常生活中的健康风险进行比较。 5 说明 ALARA 计划的 BNL 管理政策。 6 应用时间、距离和屏蔽的概念来减少辐射剂量。模块 3 1 确定《普莱斯-安德森修正案》(PAAA)和 10CFR835 关于 BNL 放射防护的目的和范围。 2 确定 BNL 政策的目的和范围,即您有关停止不合规放射工作的责任和权限。 3 说明 BNL 放射意识报告 (RAR) 计划的目的。 模块 4 1 确定 DOE 辐射剂量限值和 ACL 2 确定行政控制级别 (ACL) 的目的 3 确定 BNL ACL 4 确定您在遵守剂量限值或 ACL 方面的责任。 模块 5 1 说明热释光剂量计的用途并确定其正确用途。 2 说明您所在部门内佩戴的其他剂量计的用途并确定其正确用途。 3 说明在 BNL 获取您的剂量记录的方法。 4 确定您报告从其他设施收到的剂量的责任。 5 确定您报告涉及使用放射性同位素的医疗/疗法的责任。模块 6 1 识别在 BNL 采购放射性物质的过程。 2 说明标记和/或标签放射性物质的要求。
出版物 100 人体消化道放射防护模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 出版物 96 在发生放射性袭击时保护人们免受辐射照射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 出版物 92 相对生物效应 (RBE)、品质因数 (Q) 和辐射权重因数 (wF) . .8 出版物 91 评估电离辐射对非人类物种影响的框架 . . . . .8 出版物 90 产前辐照后的生物效应 (胚胎和胎儿) . ...
此外,定量算法允许测量碘浓度,这反映了在印度造成损伤的血液。 div>允许您获得较低辐射剂量和较低对比度和模式的图像以获得相同的TC值。 div>但是,它使用电离辐射,图像的后处理会消耗时间,而碘图中的伪影可能是假伪造的潜在来源。 div>此外,TC div>的扫描仪
已知抽象电离辐射会引起对造血系统的重大损害,这主要损害骨髓功能。叶酸在单碳代谢和各种细胞过程(包括DNA合成和修复)中起着至关重要的作用。本研究研究了叶酸参数对X射线照射的雄性兔子中血液学参数和骨髓组织学的潜在辐射保护作用。实验设计包括四个组:(1)对照,(2)补充叶酸,(3)X射线暴露,以及(4)补充叶酸和X射线的合并。血液学分析表明,X射线暴露后,白细胞(WBC),红细胞(RBC)和血小板(PLT)计数显着下降,表明辐射诱导的造血抑制。值得注意的是,补充叶酸部分恢复了这些参数,表明其在促进造血恢复中的作用。此外,对骨髓的组织学检查显示,叶酸处理的组的细胞性增加,进一步支持其针对辐射引起的骨髓抑制的保护作用。这些发现表明,补充叶酸可能会减轻电离辐射的不良造血作用,从而强调其作为辐射保护剂的潜力。关键字。放射保护,叶酸,血液学,骨髓,组织病理学。引入辐射引起的对造血系统的损害是电离辐射暴露的有据可查的结果,主要影响骨髓功能和外周血细胞计数。电离辐射会产生活性氧(ROS),导致氧化应激和细胞凋亡,尤其是在造血干细胞和祖细胞中[1,2]。叶酸是参与DNA合成和修复的必需B维生素,已假设具有辐射保护性能。急性辐射综合征(ARS)通常称为辐射疾病,是由于全身暴露于高剂量的电离辐射而发生的。这种情况的特征是生化参数严重中断,可能会对多个器官系统产生不利影响,包括造血[3],心血管[4]和胃肠道系统[5]。此外,大脑发育尤其容易受到电离辐射的影响,如大量研究所证明[6]。产前暴露于X-radiation与人类和实验动物的大脑的组织学变化有关,从而导致学习和记忆障碍[7]。造血干细胞以其高放射敏感性而闻名,在维持血细胞计数中起着至关重要的作用,这仍然是评估疾病状况的关键诊断工具。长时间暴露于X射线会导致外周血细胞谱发生显着改变,包括由于血小板水平降低而导致中性粒细胞计数,严重的淋巴细胞减少症和血小板减少症。电离辐射通常会抑制骨髓活性,导致外周循环中血细胞的产生降低,尽管其对大多数细胞或组织的直接影响相对较少[8]。在Geng等人的一项研究中。在Geng等人的一项研究中。全身辐射的全身作用主要在血液学,胃肠道和脑血管系统中表现出来,从而导致广泛的功能障碍和器官损伤[9,10]。这些见解强调了电离辐射对细胞和全身水平的广泛而复杂的生物学影响。造血干细胞高度放射敏感,在监测疾病状况中起着至关重要的作用,血小板计数是可靠的诊断指标。暴露于0.5至1 Gy的电离辐射剂量可能会导致外周血细胞谱的显着变化,包括中性粒细胞计数升高,严重的淋巴细胞减少症和血小板水平降低(血小板减少症)。淋巴细胞特别容易受到辐射诱导的损伤,即使在低剂量为0.05-0.15 Gy的情况下也经历了相间死亡。电离辐射抑制骨髓活性,导致外周血细胞产生的减少,尽管它对大多数细胞或组织造成了最小的直接伤害[8]。辐射的全身效应扩展到各种器官系统,包括胃肠道,脑和循环系统,导致了广泛的器官功能障碍[9,10]。辐射诱导的骨髓抑制和降低的外周血计数突出了造血恢复在治疗辐射损伤中的重要性[11]。Li及其同事(2014)[12]的研究表明,辐射不仅减少造血细胞数量,而且还刺激其余细胞的激活。[8],暴露于
类型 常见ICI类型 支持项目 ICI-ICI nivolumab ipilimumab ICI-ACT nivolumab Car-T/TIL ICI-化疗 nivolumab化疗 ICI 抗血管生成 nivolumab 抗血管生成治疗 ICI-疫苗 nivolumab HPV16特异性肽疫苗 ICI-放疗 nivolumab 电离辐射 ICI-TME nivolumab靶向TGFβ ICI-细胞因子 nivolumab IL2/IFN-γ
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
基于光学材料的剂量法已广泛使用。从灵敏度的角度来看,使用储存磷剂是有利的。(1)热发光(TL)(2,3)和光刺激的发光(OSL)(4-7)已用于个人剂量计和辐射成像。此外,定义为通过电离辐射产生的辐射中心的光致发光的放射性光致发光(RPL)已用于个人剂量测定和荧光轨道检测。(8,9)以实现进一步的灵敏度(10-16)或将适用性扩展到热中子,(17-24)已经进行了大量研究和发表。通常,可用于剂量测定法的储存磷酸盐由无机晶体或包含相对较高原子数元件的玻璃组成。在医学剂量法中,对于癌症的放射疗法,剂量计需要组织等效性。组织等效性是电离辐射能量与生物组织的吸收特征的等效性。为了达到组织等效性,可以使用有限数量的元素(通常原子数为3-9)。这在基于无机化合物的材料设计中施加了严重的限制。实现组织等效的有效方法是使用有机材料或软物质。到目前为止,已经开发了基于凝胶(25)或聚合物(26-31)的放射性剂量计。另外,有机