仅用于研究使用。不适用于诊断程序。©2023 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。col023914 0223
传统上,将基因组编辑试剂引入哺乳动物受精卵是通过细胞质或原核微注射完成的。这一耗时的过程需要昂贵的设备和高水平的技能。受精卵电穿孔提供了一种简化和更精简的方法来转染哺乳动物受精卵。有许多研究检查了小鼠和大鼠受精卵电穿孔中使用的参数。在这里,我们回顾了已报道的小鼠和大鼠的电穿孔条件、时间和成功率,以及关于牲畜受精卵(特别是猪和牛)的少数报道。在受精时或受精后不久引入编辑试剂可以帮助降低嵌合率,即个体细胞中存在两种或更多种基因型;引入核酸酶蛋白而不是编码核酸酶的 mRNA 也可以。嵌合在世代间隔较长的大型牲畜物种中尤其成问题,因为通过繁殖获得非嵌合的纯合后代可能需要数年时间。通过非同源末端连接途径实现的基因敲除已得到广泛报道,并且使用电穿孔成功实现的基因敲除比基因敲入更多。将大型 DNA 质粒递送到受精卵中会受到透明带 (ZP) 的阻碍,并且大多数通过电穿孔实现的基因敲入都使用短单链 DNA (ssDNA) 修复模板,通常小于 1 kb。在不使用细胞质注射的情况下,将长达 4.9 kb 的较大供体修复模板与基因组编辑试剂一起递送到受精卵中最有希望的方法是使用重组腺相关病毒 (rAAV) 与电穿孔相结合。但是,与用于递送成簇的规律间隔回文重复序列 (CRISPR) 基因组编辑试剂的其他方法类似,这种方法也与高水平的嵌合性有关。最近的研究成果是利用编辑过的生殖系能力细胞补充生殖系消融个体,从而避免基因组编辑创始系生殖系中出现嵌合现象。即使通过电穿孔介导将基因组编辑试剂递送至哺乳动物受精卵,基因组编辑流程中仍存在其他瓶颈,目前阻碍了非嵌合基因组编辑牲畜的可扩展生产。
体细胞核转移或细胞质显微注射已用于产生基因组编辑的农场动物。但是,这些方法具有降低其效率的几个缺点。这项研究旨在开发电穿孔条件,使CRISPR/CAS9系统的传递到牛为有效的基因敲除。我们优化了电穿孔条件,以传递CAS9:SGRNA核糖核蛋白到牛合子,而不会损害胚胎发育。较高的电穿孔脉冲电压导致膜渗透性增加。但是,高于15 v/mm的电压降低了胚胎发育潜力。牛胚胎的Zona卵石不是有效的RNP电穿孔的障碍。使用针对最大膜通透性进行优化的参数,同时我们在靶向牛OCT4时达到了高基因编辑的速率,这导致100%评估的胚胎和预期在莫拉拉阶段对胚胎发育的预期停滞的100%蛋白质。总而言之,CAS9:SGRNA核糖核蛋白可以通过电穿孔到Zona-Intact牛合子的能力递送,从而导致有效的基因敲除。
说明HLA-A/B/C敲除电穿孔套件适用于通过电穿孔的细胞系和原代T细胞工程。该套件既包含Cas9酶(链球菌)和靶向HLA-A/B/C(人白细胞抗原)的GRNA。该套件足以设计高达500万个原代T细胞。背景HLA(人白细胞抗原)-a,b和c是MHC的三种主要类型(主要的组织相容性复合物)1类跨膜蛋白。它们与β2微球蛋白蛋白(由B2M基因编码)形成异二聚体。MHC 1类分子表现出短多肽,通常在长7-11个氨基酸之间,以识别为“自我”或“非自身”的免疫系统。HLA-C存在于所有细胞中,并且由于HLA-C基因的多样性而作为几种单倍型存在。c*08:02代表一种这样的单倍型。HLA I类将新抗原衍生的肽呈现到细胞表面,从而通过TCR(T细胞受体)识别出T细胞的识别。 癌症免疫疗法一直在使用该机制,方法是表达能够识别特定癌症免疫原子的TCR。 在2016年,HLA-C*08:02限制性TIL(肿瘤浸润淋巴细胞)在肺癌中靶向KRAS(Kirsten大鼠肉瘤病毒)G12D突变,导致阳性结果。 在转移性胰腺癌患者中采用了类似的方法,并导致该疾病的消退。 HLA-C*08:02限制性TIL对其他新抗原的TCR的研究可能对癌症治疗有益。 应用程序HLA I类将新抗原衍生的肽呈现到细胞表面,从而通过TCR(T细胞受体)识别出T细胞的识别。癌症免疫疗法一直在使用该机制,方法是表达能够识别特定癌症免疫原子的TCR。在2016年,HLA-C*08:02限制性TIL(肿瘤浸润淋巴细胞)在肺癌中靶向KRAS(Kirsten大鼠肉瘤病毒)G12D突变,导致阳性结果。在转移性胰腺癌患者中采用了类似的方法,并导致该疾病的消退。HLA-C*08:02限制性TIL对其他新抗原的TCR的研究可能对癌症治疗有益。应用程序K562细胞是HLA I和II类负的,使其成为引入和研究特定单倍型响应的理想细胞模型。hla在供体细胞和个体之间的不匹配可以导致免疫排斥反应,一种选择是敲除内源性HLA,从而使细胞被更广泛地普遍使用。
摘要:目的:这项研究的目的是探索γδT细胞扩展的最佳条件,并确定γδT细胞最合适的电穿孔条件。方法:在这项研究中,我们将唑来膦酸和细胞因子组合起来诱导γδT细胞,并使用Lonza amaxa 4D-核对象来优化电穿孔的区别。通过流式细胞仪检测到γδT细胞的电穿孔效率。结果:结果表明,外周血比脐带血可能产生更高的纯度γδT细胞(P <0.0001),并且诱导的γδT细胞的比例达到82.43±5.9%。通过流式细胞仪,我们发现与其他电动模块相比,电穿孔模块EH-115导致最高的电穿孔效率(所有p <0.0001)。此外,我们还发现,当100μl电穿孔系统中的细胞数量为3×10 6时,转移效率最高(所有P <0.001),并且最终转染效率达到69.1±2.26%。结论:在这项研究中,可以有效地获得一定比例的γδT细胞,并大大提高了转染效率,这为γδT细胞的遗传修饰提供了有效的程序。
创建 Connect 平台帐户 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 将仪器链接到 Connect(仅限管理员) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 将仪器连接到互联网 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 创建 PIN 码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 从仪器生成链接代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Integrated DNA Technologies, Inc. (IDT) 是基因组学时代的倡导者。30 多年来,IDT 的基因组学应用创新工具和解决方案一直在推动进步,激励科学家敢于梦想并实现下一个突破。IDT 开发、制造和销售核酸产品,支持生命科学行业在学术和商业研究、农业、医疗诊断和药物开发等领域的发展。我们拥有全球业务,提供个性化的客户服务。请访问 www.idtdna.com 了解我们能为您做些什么。
ire是一种方法,其中EP通过60-100高压(1.5-3 kV)80-100 µs的爆发来诱导渗透细胞死亡。导致这种渗透死亡的细胞机制是由反应性氧的激活,这是由于跨膜离子流动改变导致的细胞内钙的过度蓄积。IRE触发的细胞死亡发生,没有大量的热变暖或热诱导的Tis-Sue损伤(6)。GET方法论是基于产生能够使遗传颗粒(例如质粒)跨越细胞膜的微孔的,以引入负责诱导免疫系统或靶细胞死亡的基因的表达(9)。ect是一种方法,在这种方法中,通过在肿瘤组织上应用高压电场在局部或系统上的施用,以促进肿瘤细胞对抗肿瘤药物的渗透率(10)。已经提出了几种不同的电程。在图1a,b,c中描绘了最多采用的ECT电场。最常用的细胞毒性化学治疗剂是博来霉素,同样
该方案描述了如何将核糖核蛋白(RNP)复合物组成,这些复合物由纯化的CAS9核酸酶复制,用化学改良的合成单导剂RNA(SGRNA)复制到永生的粘附或悬浮液中。包括一个敲门选项。RNP递送是使用Thermo Fisher Neon™转染系统完成的。包括各种细胞类型的电穿孔设置的参考。化学修饰的SGRNA旨在抵抗可导致细胞死亡的外核酸和先天的细胞内免疫级联反应。Editco化学修改的合成SGRNA具有特殊的纯度,并且始终驱动高编辑频率。
摘要:我们研究了通过 CRISPR-Cas9 合子电穿孔在小反刍动物中进行单步基因组编辑的可能性。我们利用双 sgRNA 方法靶向绵羊胚胎中的 SOCS2 和 PDX1 以及山羊胚胎中的 OTX2。比较了在胚胎发育的四个不同时间进行的显微注射和三种不同电穿孔设置的基因编辑效率。在受精后 6 小时对绵羊合子进行电穿孔,使用包括短高压(穿孔)和长低压(转移)脉冲的设置,可以有效产生 SOCS2 敲除囊胚。CRISPR/Cas9 电穿孔后的突变率为 95.6% ± 8%,包括 95.4% ± 9% 的双等位基因突变;相比之下,使用显微注射时分别为 82.3% ± 8% 和 25% ± 10%。我们还成功破坏了绵羊的 PDX1 基因和山羊胚胎的 OTX2 基因。PDX1 的双等位基因突变率为 81 ± 5%,OTX2 的双等位基因突变率为 85% ± 6%。总之,利用单步 CRISPR-Cas9 合子电穿孔,我们成功地在小反刍动物胚胎基因组中引入了双等位基因缺失。