这项工作是由美国能源公司联盟(Alliance for of Contery No.DE-AC36-08GO28308。由美国能源部的氢气和燃料电池技术办公室提供的资金。本文中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
这项工作是由美国能源公司联盟(Alliance for of Contery No.DE-AC36-08GO28308。由美国能源部的氢气和燃料电池技术办公室提供的资金。本文中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
增强其用于PEM电解剂的催化剂:研究硼龙和磷对酸性培养基中活性碳支持的基于芳族的催化剂的影响
𝜂电解剂效率(kg H2/€/MWH EL)𝐶𝐶𝐶𝑠𝑢𝑝𝐶𝑠𝑢𝑝批发价格补充(€/MWH EL)简化:恒定的氢价格
应用区域i)LT-PEM燃料电池,ii)PEM / AEM电解剂(阴极室),iii)电池 /超级电容器的电流收集器,iv)金属表面的腐蚀保护,导电性,装饰性的表面< / div> < / div> < / div>
1。基于所证明的速率的制造速率,每个过程步骤都被外推到一台机器,并基于包含容量因素的过程模型。2。实验室CCM,具有0.20mg/cm 2 78wt%IR/NSTF粉末OER催化剂/电极,0.08mg/cm 2 pt/nstF分散的催化剂/电极,3M 800EW 100 MICRON MEMBRANE。50cm 2单元,80˚C,2A/cm 2。风VRE协议。3。通过50cm 2单元,80˚C,2A/cm 2,3m 800ew 100 micron膜,项目风变可再生能源(VRE)协议评估的项目目标。堆栈中的性能和耐用性里程碑脱离为1.735V和5µV/hr。
a。容量因子工厂在一段时间内的实际产出或吞吐量与其全容量相比。氨植物的平均容量因子为90%。b。折现利率应用于投资的未来现金流量以计算其现值。在这种情况下,假定折现率为8%。c。由天然气的燃烧产生的NG热能的LHV因水的蒸发而产生的能量损失。在这种情况下,假定NG的LHV为46.5 gj/ton。d。 MVC机械蒸气压缩是一种用于净化电解室进给水的方法。e。平衡植物支撑组件和辅助系统,包括空气系统,耀斑系统,排水系统,互连和建筑物。f。摊销通过一段时间内定期分期付款偿还债务的成本。在这种情况下,由于分别每6年和10年对PEM和碱性电解剂替换电解室的堆栈,因此仅出于绿色氨的摊销。
通过电解使用可再生能源产生的绿色氢可用于减少难以浸泡的工业部门的排放。有效的生产和大规模部署需要存储以减轻电解剂降解并确保稳定的氢供应。考虑到电池和电解液的降解,本文探讨了电池和氢系统中电池和氢存储的影响和权衡。利用优化模型,我们检查了整个存储能力和风能配置文件的系统性能和成本。我们的结果表明,电池的短期波动平滑并最大程度地减少电解仪降解,但由于频繁的充电/放电周期而导致的显着降解。相反,氢存储提供长期的能量缓冲,对于持续的氢产生至关重要,但可以增加电解室循环和降解。组合电池和氢存储可增强系统的可靠性,降低组件降解并降低运营成本。这突出了战略存储投资在提高绿色氢系统的性能和成本的重要性。
由于常规化石燃料的有限可用性变得更加明显,因此世界需要转向更可持续和可再生的能源。因此,燃料电池(FCS)或电蛋白剂的开发,提供清洁能源的能量转换技术(可再生且环保的)对弥补预期短缺的必不可少的必不可少,这对于实现了解决此问题的解决方案的关键[1]。的确,在站立的基础机制和催化剂中已经取得了重大进展,这些机制和催化剂均驱动氧还原反应(ORR)[2-5]和在这些设备中发生的氢进化反应(HER)[6-9],从而导致这些技术的显着进步。当前的目标是提高其效率,规模能力和经济可行性,从而为广泛采用氢作为干净可持续的能量向量铺平了道路。今天,关键原材料(CRM)在欧洲经济中继续具有重要意义。这些材料在战略上至关重要,具有高供应风险,对于无数部门,例如Elec Tronics,Reenwable Energy,Automotive和Aerospace等无数部门至关重要[10]。因此,已经进行了数十年的广泛研究[11-16],以避免使用白金组材料作为质子交换膜燃料电池(PEMFC)和PEM电解剂的催化剂。
我们报告了CO – P - O纳米颗粒(NPS)的简单制造方法,通过电镀碳布支架上的纳米颗粒(NP)。co - p - o在水电解中表现出异常的双功能催化性催化性,由于中间体的优化吸附能以及钴金属纳米颗粒的出色导电性,同时产生氢(H 2)和氧(O 2)气体。CO - P - O分别以190 mV和280 mV的氢进化反应(HE)和氧气进化反应(OER)达到10 mA/cm 2的几何电流,而其连续的催化纳米粒子在碳纤维上确保具有微小电阻的高电荷运输。观察到,co – p - o电极的性能远远超过了碳布的性能,接近由贵族电催化剂PT/C和RUO 2设置的基准测试。使用CO - P - O电极基于两电池电池的碱性电解器,在1.64 V时表现出双功能水分,在1.64 V和1.98 V时,在10和100 mA/cm 2时。此外,碱性电解剂在50 mA/cm 2的电流密度下表现出稳定的电催化活性。