电动汽车正在取代内燃机(ICE),因为负担得起的石油储备的可用性正在减少,并且需要减少CO 2排放。电动机效率高(90%,而ICE 2为20%),从而降低了维护成本。最重要的是,电动机不会发射CO 2,NOX或颗粒物,并且可以由可再生能源(例如风能或太阳能)提供动力。这项技术的挑战在于将电力存储在车载板上以供应电动机。存在两个主要选择:电池电动车辆(BEV)和氢燃料电池电动汽车(FCEV)。电池直接存储电力,而氢转化是一种间接的存储形式。为了产生氢,电力用于通过称为电解的过程将水分子分成氢(H 2)和氧(O 2)。氧气被释放到空气中,然后很容易将氢气储存在水箱中。在需要时,H 2可以与空气中的O 2重新组合,以在燃料电池中形成水和电。
由于Sabatier和Senderens在1902年发现了它,因此催化CO X氢化为甲烷(甲烷)已成为理想的模型反应,用于对气体固体界面上催化的基本了解(1)。该反应在各种工业过程中起着至关重要的作用,例如CH 4产生,CO X去除燃料电池中的氢纯化和氨合成过程(2)。由于排气再循环基础设施的进步(见图1a)(3,4),从CO 2或CO 2得出的可持续性CH 4合成的进一步发展为全球能源系统提供了有意义的补充。随着可持续能量驱动的水电解的快速发展(5,6)和CO 2对CO 2的经济可行的降低(7-9),图1A中所示的绿色H 2基于绿色H 2基于CO(7-9)具有关闭碳周期的潜力,因此影响了路线图对碳质量的影响。
1的定义为具有碳强度<4 kg CO2E/kg H2 2参见第2章和第3章,以检查最终用途的最终用途,从现有技术切换到清洁氢。请注意,一流项目的收支平衡并未表明所有切换到清洁氢的项目都会在未来3 - 5年内获得盈亏平衡(请参阅图15和27 - 建模附录),以评估最佳类别项目与一系列项目。3假设安装容量的太阳能和风GW相等。容量因素基于NREL年度技术基线5级陆上风(45%)和公用事业太阳能(27%)。范围包括NREL氢分析(H2A)生产模型的PEM和碱性电解室效率。200 GW代表了一个高案例,其中2030年产生的家庭清洁氢中有90%是通过水电解。电解的清洁能力也可能来自核电来源。4等于〜1/10当前的家庭天然气消耗
摘要:氧析出反应 (OER) 对基于水电解的未来能源系统至关重要。氧化铱是极具前景的催化剂,因为它们在酸性和氧化条件下具有耐腐蚀性。在催化剂/电极制备过程中,使用碱金属碱制备的高活性铱(氧)氢氧化物在高温(>350°C)下会转变为低活性金红石 IrO 2。根据碱金属的残留量,我们现在表明这种转变可以产生金红石 IrO 2 或纳米晶态锂插层 IrO x 。虽然转变为金红石会导致活性较差,但锂插层 IrO x 具有与高活性非晶态材料相当的活性和更好的稳定性,尽管在 500°C 下处理。这种高活性纳米晶态的铱酸锂可以更耐受生产 PEM 膜的工业程序,并提供一种稳定非晶态铱(氧)氢氧化物中大量氧化还原活性位点的方法。 ■ 简介
效率[2]和低污染物排放。[3]解决当前系统成本和长期稳定性的限制将使该技术得到广泛的商业化。[4]将电池工作温度从当前设备中的800°C以上降低到700°C以下被普遍认为是解决上述问题的有效方法,因为它可以提高CO2-H2O共电解的效率,[5]通过使用较便宜的互连材料来降低成本,[6]并减轻结构退化,包括阳离子传输[7]和颗粒粗化。[8]面积比电阻(ASR)与阴极材料的氧还原能力密切相关。[5]降低SOFC工作温度的一个显着缺点是总电池电阻增加,这将导致电池的功率输出降低。 [9] 因此,人们投入了巨大的精力来开发具有催化活性的正极材料,这种材料在 700°C 以下的温度下表现出理想的 ASR。混合离子和电子导电 (MIEC) 氧化物 Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 − δ (BSCF) 是基准正极材料之一 [9] ,因为它具有良好的电极
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。
•经济竞争的解决方案:已经能够与灰氢竞争20兆瓦及以上的装置 - 这是替代技术可实现的壮举。•基于低成本生物量能量的经济模型:生物质热解的氢比初级能源成本低(<30€/MWH,通常<20欧元/MWH,与> 70欧元/MWH的含水)相比,与水电解的氢相比,与水的电解相比,与> 70欧元/MWH的氢相比,与含量> 70欧元/MWH相比,脱氧电力的能量和最佳能量效率(通常是70%)。•与电网独立:与电解不同,热解的最低限制取决于电力可用性和成本,从而确保稳定且可预测的产生。•负碳足迹:这项技术通过生物炭共同生产隔离生物碳,在考虑完整的LCA时达到了负碳足迹。3•灵活的采购:这种生物质 - 敏捷技术能够利用各种残留生物量,尤其是农业,确保对原料市场波动的更大自治和弹性,同时显着扩大了可用的资源。
摘要:使用水电解的绿色氢的生产被广泛认为是最有前途的技术之一。另一方面,氧气进化反应(OER)在热力学上是不利的,需要显着的超电势才能以足够的速度进行。在这里,我们概述了重要的结构和化学因子,这些因素和化学因子影响了代表性的镍铁氧体改性石墨烯氧化石墨烯电催化剂在有效的水分分裂应用中执行。修饰原始和氧化石墨烯的镍铁素体的活性是根据其结构,形态和电化学性质彻底表征的。这项研究表明,Nife 2 O 4 @Go电极对尿素氧化反应(UOR)和水分分割应用都有影响。Nife 2 O 4 @Go被观察到,当电流密度为26.6 mA -CM -2在1.0 m尿素中,1.0 m KOH,扫描速率为20 mV s -1。为UOR提供的TAFEL斜率为39 mV dec -1,而GC/Nife 2 O 4 @Go电极到达10 mA CM -2 -2
•经济竞争的解决方案:已经能够与灰氢竞争20兆瓦及以上的装置 - 这是替代技术可实现的壮举。•基于低成本生物量能量的经济模型:生物质热解的氢比初级能源成本低(<30€/MWH,通常<20欧元/MWH,与> 70欧元/MWH的含水)相比,与水电解的氢相比,与水的电解相比,与> 70欧元/MWH的氢相比,与含量> 70欧元/MWH相比,脱氧电力的能量和最佳能量效率(通常是70%)。•与电网独立:与电解不同,热解的最低限制取决于电力可用性和成本,从而确保稳定且可预测的产生。•负碳足迹:这项技术通过生物炭共同生产隔离生物碳,在考虑完整的LCA时达到了负碳足迹。3•灵活的采购:这种生物质 - 敏捷技术能够利用各种残留生物量,尤其是农业,确保对原料市场波动的更大自治和弹性,同时显着扩大了可用的资源。
氢有望在卑诗省发挥重要作用。支持重型运输和工业过程等部门的脱碳[4]。卑诗省的清洁能源和主要项目办公室(CEMPO)能源和气候解决方案部是希望开发清洁能源项目(包括氢项目)的支持者的主要接触点。[5]。随着CEMPO努力履行其授权,以支持卑诗省的清洁能源项目开发,利用了增值水的副产品(包括电解的氧,甲烷热解的固体碳和废热)已被确定为潜在的机会,以提高氢项目的经济可行性。副产品利用可以降低氢的水平成本,还可以通过移动常规,较高的碳强度材料来提供环境益处。氢副产品利用应被视为卑诗省未来更新的一部分。氢策略和卑诗省的发展的循环经济战略。cempo应确保所有项目开发人员都知道兼产品利用的经济利益,以及应用循环经济原则和工业共生的机会