电路表征学习在电子设计自动化 (EDA) 中越来越重要,它通过提高模型效率和准确性为各种下游任务提供服务。一项值得注意的工作 DeepSeq 通过对时间相关性进行编码开创了顺序电路学习。然而,它存在重大限制,包括执行时间延长和架构效率低下。为了解决这些问题,我们引入了 DeepSeq2,这是一个增强顺序电路学习的新框架,通过创新地将其映射到三个不同的嵌入空间——结构、功能和顺序行为——从而允许更细致的表征来捕捉电路动态的固有复杂性。通过采用高效的有向无环图神经网络 (DAG-GNN) 来绕过 DeepSeq 中使用的递归传播,DeepSeq2 显著缩短了执行时间并提高了模型的可扩展性。此外,DeepSeq2 采用了独特的监督机制,可以更有效地捕捉电路内的过渡行为。 DeepSeq2 在序贯电路表示学习中树立了新的基准,在功率估计和可靠性分析方面的表现优于之前的研究。
图 1 量子电路的数学和视觉表达。初始状态的向上向量(数学上为 (1,0, … ,0) 𝑇 )通过 𝑉(𝒙) 的编码门进行旋转。图中显示了一个简单的情况,其中第 i 个量子位与 𝑥 𝑖 的角度一起旋转。然后,量子位通过 𝑈(𝜽) 的门进行交互。最后,使用概率分布观察到第一个量子位的向上或向下向量。𝑉(𝒙) 和 𝑈(𝜽) 的变换与初始状态向量成线性关系。最后的观察是一个非线性步骤。
摘要:量子计算具有胜过经典计算机的潜力,并有望在各种领域中发挥积极作用。在量子机学习中,发现量子计算机可用于增强特征表示和高维状态或功能近似。量子 - 古典杂交算法近年来在嘈杂的中间尺度量子计算机(NISQ)环境下为此目的提出了量子 - 级别的混合算法。 在此方案下,经典计算机所起的作用是量子电路的参数调整,参数优化和参数更新。 在本文中,我们提出了一种基于梯度下降的反向传播算法,该算法可以充分地计算参数优化中的梯度并更新量子电路学习的参数,该参数以当前参数搜索算法的范围优于计算速度,同时呈现相同的测试精度,甚至更高。 同时,所提出的理论方案成功地在IBM Q的20量量子计算机上实施。 实验结果表明,栅极误差,尤其是CNOT门误差,强烈影响派生的梯度精度。 随着由于累积的门噪声误差,在IBM Q上执行的回归精度变得较低。量子 - 级别的混合算法。在此方案下,经典计算机所起的作用是量子电路的参数调整,参数优化和参数更新。在本文中,我们提出了一种基于梯度下降的反向传播算法,该算法可以充分地计算参数优化中的梯度并更新量子电路学习的参数,该参数以当前参数搜索算法的范围优于计算速度,同时呈现相同的测试精度,甚至更高。同时,所提出的理论方案成功地在IBM Q的20量量子计算机上实施。实验结果表明,栅极误差,尤其是CNOT门误差,强烈影响派生的梯度精度。随着由于累积的门噪声误差,在IBM Q上执行的回归精度变得较低。