表1中列出的方案表明,氢可以以可再生和网格原料的目前以$ 4至6 kg-h 2的价格生产氢。这些分析的起点是当前的分布式H2A案例研究和相应的DOE程序记录“ PEM Electrossy-2019中的氢生产成本” [4]。在DOE记录中包含的“当前”案例研究与“现有”案例研究之间进行了区分,其中将输入参数调整为表1中的内容。与先前发表的记录相比,对电气投入和相关容量因子的成本以及系统资本成本进行了调整,以代表使用当今电解层技术,制造量和成本的可能现有情况。出于此记录的目的,对案例研究进行了更改。氢的成本预测结果代表了仅与氢生产(不包括压缩,存储和分配)相关的无税和无累积的成本。
收稿日期 : 2020-01-03 基金项目 :国家自然科学基金( 61763037 );内蒙古自然科学基金( 2019LH06007 );内蒙古自治区科技计划( 2019 , 2020GG0283 ) 通信作者 :齐咏生( 1975 —),男,博士、教授,主要从事风电机组状态监测与故障诊断方面的研究。 qys@imut.edu.cn
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
成本下降带来了希望,即电池很快就能管理数小时甚至数天的风能和太阳能间歇性问题。 1 随着可再生能源份额的增长,更大的挑战将是如何平滑数周和数月时间尺度上的可再生能源产出变化。如图 1 中加利福尼亚州的情况所示,风能和太阳能的季节性变化将需要比电池更具成本效益的技术来进行长期储能。迫切的需求似乎来自加利福尼亚州等富裕地区,该州的目标是在 2026 年实现 50% 的可再生能源发电量,在 2030 年实现 60% 的可再生能源发电量。然而,由于发展中国家的电网建设基础较低,可再生能源的高份额会更快到来。一些快速增长的非洲和亚洲国家已经不得不推迟一些可再生能源的发展,因为它们的电网无法处理产出的变化。
Electrochaea 是电网规模碳和储能技术的领先开发商。我们的生物电转气 (P2G) 技术的核心是一种选择性进化的微生物,它凭借前所未有的催化能力、可扩展性和工业稳健性而出类拔萃。我们的 BioCat 工艺利用低成本或闲置电力将二氧化碳和氢气转化为可再生甲烷,满足天然气电网注入的规格。
欧洲能源转型计划设立了明确的目标,即在绿色协议能源政策框架下到 2050 年实现气候中和的欧洲 [1]。欧盟委员会于 2021 年通过的“Fit for 55 0”一揽子计划为欧盟 2030 年气候和能源框架引入了更为严格的立法措施,包括可再生能源、能源效率、努力分担和排放标准立法、土地使用和林业以及能源税指令 [2]。现有的欧盟立法框架已被用于实施绿色协议愿景,明确表明未来能源结构中可再生能源 (RES) 的比重将增加,以及排放交易体系 (ETS) 对所有能源部门实施更严格的脱碳机制。太阳能和风能的不断普及极大地激励了电网的脱碳。然而,向欧盟碳中和能源系统有效利用低碳和可再生能源需要扩展到热力和运输领域,同时促进供应安全。通过结合节能和用电子燃料(基于电力生产氢气、合成气体和液体)取代化石燃料,可以将可再生能源发电系统的规模扩大 2 到 2.5 倍 [3],从而实现最终能源需求领域的气候中和。通过提高电气化程度实现的能源转型不仅对能源系统提出了巨大的挑战,包括太阳能和风能发电场的巨大容量和投资,而且对供应安全以及技术、经济和监管层面所需的额外措施也提出了挑战。目前,德国 [4]、美国 [5] 和中国 [6] 的可再生能源渗透率较低,已经报道了可再生能源的削减,导致可再生能源浪费和市场电价为负。电力供需时间间隔方程既需要运行单元的灵活性和同步性,也需要额外的能源储存措施、部门耦合和电网基础设施升级,以及高效的多国综合系统和市场,以经济高效地平衡可变可再生能源发电[7]。2050 年欧盟碳中和系统的能源建模研究解决了多功能能源储存技术的需求,以避免在可再生能源可用性高时通过负荷转移和灵活性进行削减,以及避免在可再生能源可用性低时进行负荷削减[3,8]。特别是,由于储存需求与总发电量的非线性增长有关,氢气和合成燃料形式的季节性能源储存被认为非常重要,因为报告称,电子燃料在最终能源中的份额为 20%。
| 稳定的能源供应 PtG 是确保可靠能源供应努力的重要组成部分。它通过利用现有天然气基础设施的理想长期存储容量来促进能源转型。使用 PtG 技术,可再生能源产生的电力首先通过电解转化为氢气。这可以在专有催化反应器中与二氧化碳结合产生甲烷,然后可以不受任何限制地输送到现有的天然气基础设施中。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
摘要:随着可再生电力整合为网络运营商带来电网平衡挑战,新的电网弹性方法受到能源研究界的广泛关注。电转气 (P2G) 应用可以生产和使用绿色氢气。因此,它们可以将更多的可再生能源整合到能源系统中。同时,物联网 (IoT) 解决方案可以优化分散系统中的可再生能源应用。尽管这两种技术在可再生能源丰富的电网发展中都具有战略重要性,但基于物联网和相关解决方案的 P2G 进步机会尚未成为可再生能源研究的前沿。为了填补这一研究空白,本研究提出了一个混合(主题和批判)系统文献综述,以探讨战略共同专业化机会如何出现在最近的出版物中。研究结果表明,P2G 和 IoT 可以在多能源系统和能源互联网的拟议框架内从根本上联系起来,但需要进一步实证研究它们的操作和战略整合(例如,降低成本、风险管理和政策激励)。
