在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
摘要 温度对锂离子电池的性能、寿命和安全性有至关重要的影响。因此,了解单个电池单元和电池组内的热量产生和耗散对于制定适当的热管理策略至关重要。关键挑战之一是电池单元的界面传热难以量化。采用稳态绝对法和瞬态激光闪光扩散率法分别测量电池层堆栈和单个电池层的热导率。结果表明,闪光扩散率法在横向和平面内方向均具有更高的热导率。差异主要是由界面热阻引起的,因此可以通过稳态和瞬态测量来估算。为了研究界面热传输对单个电池级别以外的影响,使用了多物理场电池模型。该模型建立在电池组的多尺度多领域建模框架之上,该框架考虑了多种物理现象之间的相互作用。通过数值实验量化了使用热管理材料的电池模块的好处。在热失控事件中,发现界面热阻可以通过显著减少电池之间的热传递来缓解电池模块中的热失控。关键词:锂离子电池、热管理、界面热阻、多物理场建模术语 T 温度 k 热导率 α 热扩散率 ρ 密度 C p 热容量 li 厚度