。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.12.12.637845 doi:Biorxiv Preprint
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
胶体材料和界面是流行的跨学科领域,涉及物理,化学,生物学和其他学科的相交。胶体材料的结构单元的粒径位于中尺度上,在分子和宏观材料(例如高比表面积,量子尺寸效应和界面相互作用)之间具有独特的胶体材料(Xia等,2000)。其中,界面现象在胶体材料中尤为重要,因为界面的性质显着影响胶体颗粒的稳定性,组装行为和功能性能。因此,该领域的核心在于研究胶体的制备,结构和特性及其在各个接口处的相互作用。胶体材料的开发具有悠久的历史,涵盖了从四世纪制作的Lycurgus杯,到1857年的胶体“ Ruby”黄金的合成,再到2023年诺贝尔奖的诺贝尔化学奖,用于发现和合成纳米颗粒的量子量,覆盖了千年来。胶体科学的基础工作始于20世纪中叶。在1950年,Victor La Mer和Robert Dinegar开发了一种用于产生单分散液体的理论和过程,该溶质溶液允许具有均匀颗粒尺寸的胶体的控制生产(Lamer and Dinegar,1950年)。这是一个关键时刻,为纳米技术和材料科学的未来发展奠定了基础。这些进步不仅大大扩展了材料数据库,而且增强了实际应用的生产可扩展性。在数十年中,胶体材料的合成取得了重大进展,利用诸如溶胶 - 凝胶过程,水热合成,超声剥落和化学蒸气沉积等技术,以实现具有可控制的尺寸和形态的高质量纳米颗粒(Yin and andivisatos,2005年)。近年来,研究将重点转移到具有独特光学,电子和催化特性的胶体材料的合成和应用中。中,具有等离子效应的胶体(AU,Ag,Cu等。)具有高灭绝系数和显着的局部场增强作用,是光学相关材料和设备的重要组成部分(Linic等,2011)。多亏了纳米材料合成中的突破,已经合成了各种维度,形态和组成的等离子纳米材料。值得注意的是,手性等离子体胶体金属材料的合成以及等离子胶体材料的周期表的提议被认为是胶体材料开发中的重要里程碑(Lee等,2018; Tan等,2011),使胶体材料合成技术及其在专业化学中的应用中越来越多地越来越多。此外,半导体纳米晶,量子点和凝胶也是胶体材料和界面的关键研究方向(Reiss等,2009)。
EEGLAB 信号处理环境是目前处理脑电图 (EEG) 数据的领先开源软件。神经科学网关 (NSG,nsgportal.org) 是一个基于 Web 和 API 的门户,允许用户在美国 XSEDE 网络中的高性能计算 (HPC) 资源上轻松运行各种与神经科学相关的软件。我们最近报道了 (Delorme 等人,2019) Open EEGLAB Portal 扩展了免费 NSG 服务,以允许神经科学界使用 EEGLAB 工具环境构建和运行 MATLAB 管道。我们现在发布了一个 EEGLAB 插件 nsgportal,它可以在任何个人实验室计算机上的 MATLAB 上运行的 EEGLAB 中直接将 EEGLAB 与 NSG 连接起来。该插件具有灵活的 MATLAB 图形用户界面 (GUI),允许用户轻松提交、交互和管理 NSG 作业,以及检索和检查其结果。支持这些 GUI 功能的命令行 nsgportal 工具允许 EEGLAB 用户和插件工具开发人员构建高度自动化的功能和工作流程,包括可选的 NSG 作业提交和处理。这里我们详细介绍了 nsgportal 的实施和文档,提供了示例应用程序的用户教程,并展示了使用 HPC 与笔记本电脑处理的计算时间的比较示例测试结果。
了解颗粒在空气界面上的运动可能会影响广泛的科学领域和应用。diamagnetic颗粒在空气 - 磁流体界面上流动,是磁体的排斥运动。在这里,我们显示了一种运动机制,其中吸引了空气 - 磁流体界面上的磁磁颗粒,并最终被困在距磁铁偏低的距离处。还已经研究了磁性颗粒的行为,并在一个统一的框架中对运动机制进行了理论,表明颗粒在空气 - 磁磁性 - 液体界面上的运动不仅受磁能的控制,而且是由液体磁性磁性远程绘制的磁性构成的曲率相互作用,并且是液体磁性磁性的磁性磁性磁性的磁性磁性,且磁性磁性的磁性。有吸引力的运动机制已应用于定向的自组装和机器人粒子引导中。
Théo Liénard——市长、Myriam Taverna、Stéphanie Descroix、Thanh Duc Mai。用于样品处理、分离和定量的微尺度电泳中的液滴接口策略:综述。 Analytica Chimica Acta,2021,1143,第 281-297 页。�10.1016/j.aca.2020.09.008�。 �第 03493600 页�
Jean-FrançoisSilvain,LoïcConstantin,Jean-Marc Heintz,SylvieBordère,LionelTeulé-Gay等在液相键合中控制界面交换,可以为高功率和温度应用形成强可靠的Cu – SN焊接。ACS应用电子材料,2021,3(2),pp.921-928。10.1021/acsaelm.0c01040。hal-03153399
摘要 — 目的:完全性四肢瘫痪会使人失去手部功能。辅助技术可以提高自主性,但用户仍然需要符合人体工程学的界面来操作这些设备。尽管四肢瘫痪的人手臂瘫痪,但他们可能仍保留着残留的肩部运动。在这项研究中,我们探索了这些运动作为控制辅助设备的一种方式。方法:我们用一个惯性传感器捕捉肩部运动,并通过训练基于支持向量机的分类器,将这些信息解码为用户意图。结果:设置和训练过程只需几分钟,因此分类器可以是用户特定的。我们对 10 名身体健全和 2 名脊髓损伤参与者测试了该算法。平均分类准确率分别为 80% 和 84%。结论:提出的算法易于设置,操作完全自动化,所取得的结果与最先进的系统相当。意义:手部功能障碍人士使用的辅助设备在用户界面上存在局限性。我们的工作提出了一种新方法来克服这些限制,即对用户动作进行分类并将其解码为用户意图,所有这些都只需简单的设置和培训,无需手动调整。我们通过对最终用户的实验证明了它的可行性,其中包括完全四肢瘫痪、没有手部功能的人。
Camille Thillier,Elena Parsy,Lorraine Charles,Pierre-Baptiste Mathieu de Carvalho,Laurent Bougrain等。设计脑部计算机界面以促进肌萎缩性侧索硬化症患者的通信。loria; IDMC(统一洛林)。2024。hal-04521816
一般权利一般权利所有珍珠中的内容均受版权法保护。根据发布者政策提供作者手稿。请仅使用项目记录或文档中提供的详细信息引用发布的版本。在没有公开许可证的情况下(例如Creative Commons),应从出版商或作者那里寻求进一步重用内容的许可。取消策略取消政策,如果您认为本文档违反版权,请联系提供详细信息的图书馆,我们将立即删除对工作的访问并调查您的索赔。遵循以下工作:https://pearl.plymouth.ac.uk/ada-research