未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2021年5月21日。; https://doi.org/10.1101/2021.03.15.435378 doi:biorxiv Preprint
人工智能(AI)在预期我们的行为方面变得越来越有效。这种影响在不久的将来会影响我们对使用AI助攻产生的事件的控制权?这反过来会影响我们的决策,行动,心理健康和责任感。在日常生活中,我们对我们的行动适应这些延误后在各种延误中发生的事件的代理意识。在这里,我们调查了我们的代理意识是否也可以适应不寻常的情况,在这种情况下是在行动之前的。我们使用了一个在线游戏,玩家旨在击败计算机来查找和单击目标以触发动画,而实际上,算法在播放器单击之前触发了动画。动画不是由算法随机控制的,而是基于玩家过去动作的历史和当前运动的开始。我们使用相关性,机器学习解码和建模方法来捕获玩家如何计算其在动画上报告的代理意识。我们发现证据表明,在不到一个小时的时间里,玩家隐含地了解到动画的时机与他们自己的行为有关,并相应地调整了他们的代理意识。这样的发现可能会帮助我们预测人类将如何整合AI辅助以指导其行为。
控制土传疾病是番茄生产的主要问题之一。本研究旨在调查使用富含细菌和真菌的蚯蚓堆肥对感染根结线虫 (Meloidogyne javanica) 和枯萎病 (Fusarium oxysporum) 的番茄植株生长参数的影响。蚯蚓堆肥的应用量包括控制量、最佳量和过量量。生物防治剂是菌根真菌 (Glomus mosseae) 和两种拮抗细菌 (枯草芽孢杆菌和恶臭假单胞菌)。这些生物防治剂可单独使用、二元组合使用,也可在不同蚯蚓堆肥应用量下以三元组合使用。实验结束时测量了生长参数,包括茎干湿重、根干湿重和叶绿素指数。结果表明,在两种水平上施用蚯蚓堆肥以及在所有组合处理中接种生物防治剂,显著 (P < 0.001) 改善了感染病原体的植物的生长参数。在两种水平的蚯蚓堆肥和感染镰刀菌的三种生物防治剂组合中获得的大多数研究参数最高,而在蚯蚓堆肥施用和生物防治剂以及感染两种病原体的对照条件下获得的生长参数最低。总体而言,我们的研究结果表明,蚯蚓堆肥和生物防治剂的组合使用在提高番茄植株对根结线虫和镰刀菌的防御能力方面具有显著效果,因此可以提高植株的生长水平。
摘要 番茄是世界上第一种被食用的蔬菜。它生长在非常不同的条件和地区,主要用于加工番茄的田间,而新鲜市场番茄通常在温室中生产。番茄面临着许多环境压力,包括生物压力和非生物压力。如今,许多新的基因组资源可用,从而加速了遗传进程。在本章中,我们将首先介绍培育气候智能型番茄的主要挑战。我们将介绍与生产力、果实质量和对环境压力的适应有关的育种目标,特别关注气候变化如何影响这些目标。在第二部分中,将介绍可用的遗传和基因组资源。然后将讨论传统和分子标记育种技术。然后将特别关注生态生理建模,这可能构成定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何使用它们来培育气候智能型番茄。 关键词:番茄,育种,生产力,生物胁迫,非生物胁迫,理想型,建模 1 简介 番茄是继马铃薯之后世界上第一种被食用的蔬菜。它已成为许多国家的重要食品。番茄主要有两种品种:用于加工业的有限生长番茄,仅在露地生产;用于新鲜市场的无限生长品种,可在从露地到受控条件的温室等各种条件下种植。番茄,Solanum lycopersicum L.,与马铃薯、茄子和辣椒同属茄科。它是一种自花授粉作物,具有中等大小(950 Mb)的二倍体(2n=2x=24)基因组。2012 年发表了一个高质量的参考基因组序列(番茄基因组联盟,2012 年)。番茄原产于南美洲,还有 12 种野生近缘种,可与栽培番茄品种杂交。存在几个大型遗传资源集合,这些基因库中保存了 70,000 多个品种。这些集合还包括科学资源,例如突变体集合或分离种群。长期以来,番茄也是遗传分析的典型物种。许多诱导重要表型变异的突变被发现并被克隆,许多抗病基因的功能也得到了表征。番茄也是果实发育和生理学的典型物种。它易于转化,是第一种生产和销售的转基因食品(Kramer 和 Redenbaugh,1994 年)。在本章中,我们将首先介绍培育气候智能番茄的主要挑战。与生产力相关的育种目标,我们将介绍水果品质和对环境压力的适应性,特别关注气候变化如何影响这些目标。第二部分将介绍可用的遗传和基因组资源。然后讨论传统和分子标记育种技术。然后,我们将特别关注生态生理建模,这可能是定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何将其用于培育气候智能型番茄。
各种病原体严重威胁到番茄的产量和质量。理解植物病原体相互作用的进步揭示了抗药性(R)和易感性(S)基因在确定植物免疫中的复杂作用。虽然R基因具有靶向的病原体耐药性,但它们通常容易受到病原体的进化。相反,S基因为通过靶向基因编辑发展广谱和耐用的阻力提供了有希望的途径。基于CRISPR/CAS的技术的最新突破已经彻底改变了对植物基因组的操纵,从而实现了S基因的精确修饰,以增强番茄疾病的耐药性,而不会损害生长或质量。然而,由于复杂的植物病原体相互作用和当前的技术局限性,该技术的全部潜力的利用是具有挑战性的。本评论强调了使用基因编辑工具剖析和设计番茄基因以提高免疫力的关键进展。我们讨论了S基因如何影响病原体的进入,免疫抑制和营养获取,以及其目标编辑如何赋予细菌,真菌和病毒病原体的抗性。此外,我们解决了与生长防御权衡取舍相关的挑战,并提出了诸如荷尔蒙途径调制和精确的监管编辑之类的策略,以克服这些限制。这篇综述强调了基于CRISPR的方法来改变番茄育种的潜力,为在全球粮食安全挑战升级的情况下,为可持续生产抗病品种铺平了道路。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月7日发布。 https://doi.org/10.1101/2025.02.03.635865 doi:Biorxiv Preprint
作者负责根据作者24(https://academic.up.com/plphys/pages/pages/general-instructions)中描述的政策在23篇文章中不可或缺的材料分配的作者。25
此预印本的版权所有者此版本于 2025 年 1 月 26 日发布。;https://doi.org/10.1101/2025.01.23.634544 doi:bioRxiv preprint
摘要,我们通过使用整个基因组序列分析和细菌基因组中的重复区域来改进标记系统,以检查黄褐色质体物种的遗传多样性。具体而言,我们使用PCR扩增了微卫星区域,并用特定的酶消化所得的片段。这些碎片曲线用作分子标记。因此,通过将微卫星和RFLP方法组合以区分黄thomonads物种来开发细菌鉴定的更精确的标记。此外,我们分析了使用渐进式淡紫色比对在NCBI中可用的各种Xanthomonas物种的祖先顺序。数据揭示了Xanthomonas物种的独特共线区域。这些区域也与用作标记的切割基因组片段有关,从而使Xanthomonas物种感染了番茄和胡椒。我们建议这些发现有助于理解黄虫的遗传多样性和快速诊断。
在孟加拉国,番茄种植面临重大挑战,因为它易受各种微生物、寄生虫和细菌感染。通常,这些疾病的早期症状首先出现在根部和叶子中,使及时检测变得复杂。这项研究解决了及时准确检测番茄植株疾病的挑战,这对于有效的植物保护管理至关重要。传统的人工检查方法既耗时又主观,导致实施必要的保护措施的延误。因此,使用图像处理技术和机器学习算法快速可靠地检测番茄植株叶片中的疾病,旨在简化化学应用反应的检测过程。在不同光强度、视线角度和距离下捕获了一个包含 250 张番茄植株叶片图像的数据集。应用图像增强技术来增加数据集,共得到 529 张图像。这些图像被转换为 LAB 彩色图像,然后使用 OTSU 算法分割叶片图像并估计受影响患病区域的百分比。还从分割的叶片图像中提取了各种纹理特征以创建训练数据集。机器学习算法,包括支持向量机 (SVM)、K 近邻 (KNN) 和决策树,都使用该数据集进行训练和评估,以将图像分类为健康或患病。二次 SVM 算法为该数据集提供了 97.7% 的最高测试准确率。这种非破坏性处理对于提高疾病检测效率和减少番茄生产损失有着巨大的希望,无论是在孟加拉国当地还是全球。