由小麦斑枯病菌引起的小麦斑枯病(STB)是全球范围内小麦最具破坏性的真菌病害之一(Kema 等人,1996 年;Hardwick 等人,2001 年)。这种真菌会导致从初生叶片到旗叶的扩大坏死病变,在最佳环境条件下,STB 造成的总体损害可导致谷物产量损失高达 50%(Mehrabi 等人,2006 年;Goodwin,2007 年;Kema 和 van Silfhout,1997 年;Suffert 等人,2011 年)。在流行条件下,需要使用杀菌剂来控制 STB,但由于病原体通过有性重组和突变很快适应了杀菌剂,因此这种策略效果不佳(Torriani 等人,2009 年;Mohammadi 等人,2017 年;Kema 等人,2018 年)。此外,杀菌剂的使用对人类健康和环境也产生了严重威胁。因此,鉴定新的抗源并开发抗性小麦品种是可持续农业和粮食安全育种计划中最经济、最环保的方法和根本战略
白霉病是由致病真菌核盘菌引起的,影响全球 600 多种植物,包括大豆、豆类、棉花和西红柿等主要作物。这种真菌导致产量和质量大幅下降,对粮食生产构成重大威胁。生物防治提供了一种对环境安全有效的核盘菌防治方法,其中芽孢杆菌属正成为一种有前途的工具。在本研究中,菌株 JAB01 经形态学检查鉴定为芽孢杆菌,并通过全基因组测序确认。体外试验表明,芽孢杆菌 JAB01 产生可扩散物质和挥发性有机化合物,有效抑制核盘菌生长 80%,抑制菌核发芽 100%,显著减少种子和叶片的病害感染。这些研究结果表明,芽孢杆菌 JAB01 可作为一种有前途的抗白霉病生物制剂。这项研究有望对农业和植物病原体控制行业产生重大影响,有助于大豆和其他寄主植物种植的可持续农业实践。通过减少对白霉病控制杀菌剂的依赖,这项研究为农民、消费者和环境带来了益处,促进了更负责任和更有效的农业实践。
本研究的主要目的是分离和形态学鉴定与大豆植株相关的真菌以及乌兹别克斯坦大豆种植田土壤层中的真菌。通过对从田间调查中采集的 160 个大豆植株部分进行真菌学研究,分离出 95 种腐生和植物病原真菌菌株,根据种类分配,其分布如下:链格孢属 3%、菊池尾孢 3%、毛霉属 3%、炭疽菌 3%、灰葡萄孢 3%、F. Heterosporum 4%、Penissulium spp. 7%、镰刀菌属。 8%、链格孢属9%、木霉属9%、黑曲霉10%、黄色镰刀菌11%、尖镰孢菌13%、镰刀菌14%。通过对土壤样品进行真菌学研究,共回收了40个真菌分离株,其种类分配如下:链格孢属、镰刀菌属、木霉属、尖镰孢菌、黄色镰刀菌、链格孢菌、镰刀菌、黑曲霉、Penissulium sp. 毛霉属。本研究获得的真菌分离株可用于促进乌兹别克斯坦大豆病害有效综合管理的发展。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
全球粮食生产需要跟上不断增长的人口步伐,目前全球人口已达 70 亿,预计到 2050 年将达到 100 亿。随着可耕地面积不断减少,农业栖息地不断丧失,无法持续生产作物,确保、维持和提高蔬菜作物生产力和营养安全的方法之一是减少生物和非生物胁迫因素造成的损失。此外,提高蔬菜质量对公众健康至关重要。基因组学和其他生物技术工具利用基因组信息和分子标记在蔬菜育种中发挥着重要作用。这有助于生产无病害种植材料、提高质量和保质期、增加生物制剂的可用性等。用于作物改良的主要生物技术领域包括微繁殖、基因工程、分子诊断、基因组学、DNA指纹、分子标记/育种、重组DNA技术、关联作图、标记辅助选择和基因组编辑等。DNA标记可用于确定植物祖先或优生学、遗传变异程度、基因标记、连锁图谱开发以及选择表现出连续表型变异的数量性状。此外,研究基于分子标记的蔬菜作物性状遗传学有助于实现决定性的育种策略和基于图谱的基因分离。这有助于育种者将以前无法获得的基因融入商业栽培品种中,从而在现有表型中创造出新颖性。
栽培草莓(Fragaria ×ananassa)是最近驯化的一种具有世界经济价值的水果品种。因此,人们对持续品种改良有着浓厚的兴趣。基因组学辅助改良,包括使用 DNA 标记和基因组选择,促进了草莓育种过程中许多关键性状的显著改良。CRISPR/Cas 介导的基因组编辑允许在目标基因组中进行定向突变和精确核苷酸替换,从而彻底改变了功能基因组学和作物改良。基因组编辑开始在更具挑战性的多倍体作物(包括异源八倍体草莓)中获得关注。八倍体草莓的高质量参考基因组和全面的亚基因组特异性基因分型和基因表达谱数据的发布将导致使用 CRISPR/Cas 进行性状发现和修饰的数量激增。基因组编辑已成功应用于修改多种草莓基因,包括花青素含量、果实硬度和对采后病害的耐受性。然而,关于与果实质量和产量相关的许多其他重要育种特性的报告仍然缺乏,这表明需要对草莓进行精简的基因组编辑方法和工具。在这篇综述中,我们概述了涉及 CRISPR/Cas 基因组编辑以改良草莓品种的知识和育种工作的最新进展。此外,我们还探讨了该技术在改良其他蔷薇科植物物种方面的潜在应用。
控制这种疾病的方法是使用农用化学品。在巴拉那州,所用产品的有效成分包括甲氧基丙烯酸酯、二硫代氨基甲酸酯、三唑和有机锡。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估在连续使用杀菌剂、添加生物制剂和播种季节时分子的轮换对豆类炭疽病的防治效果。在第一阶段,晚播季节的 AACPI 和 AACPS 较高。处理 3(管理方案)显示豆荚发生率降低,比处理 2(化学处理)效果高出 20.46%。处理2和处理3的生产力均超过了对照,分别增加了15.82%和12.66%。第二阶段,有效成分为戊唑醇+肟菌酯和丙硫菌唑+肟菌酯的农药在添加木霉菌后,防治豆类炭疽病的效果得到增强。和枯草芽孢杆菌。关键词:炭疽菌,综合管理,杀菌剂,生物防治。摘要 炭疽病(Colletotrichum lindemuthianum)是影响普通豆类的主要疾病,可导致高达 100% 的产量损失,对粮食安全构成威胁,因为豆类是发展中国家低收入人群的主要蛋白质来源。控制这种疾病的主要方法是使用农用化学品。在巴拉那州,常用的活性成分包括甲氧基丙烯酸酯类、二硫代氨基甲酸酯类、三唑类和有机锡化合物。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估连续使用杀菌剂的分子轮换,结合生物制剂和种植时间对豆类炭疽病的治疗效果。在第一阶段,晚种植导致叶和茎炭疽病的AUDPC(病害进展曲线下面积)值更高。处理 3(综合管理方案)降低了豆荚发生率,比处理 2(化学处理)的效果高出 20.46%。处理2和处理3的产量优于对照,分别增产15.82%和12.66%。在第二阶段,含有有效成分戊唑醇+肟菌酯和丙硫菌唑+肟菌酯的农用化学品与木霉菌结合使用时对豆类炭疽病的防治效果增强。和枯草芽孢杆菌。关键词:炭疽菌,综合管理,杀菌剂,生物防治。摘要 炭疽病 (Colletotrichum lindemuthianum) 是影响豆类的主要疾病,可造成高达 100% 的产量损失,对粮食安全构成威胁,因为豆类是发展中国家低收入人群的基本蛋白质来源。控制这种疾病的主要方法是使用农用化学品。在巴拉那州,所使用的产品含有甲氧基丙烯酸酯、二硫代氨基甲酸酯、三唑和有机锡化合物作为活性成分。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估在连续使用杀菌剂、结合生物制剂和播种时间的情况下分子轮换对豆类炭疽病的防治效果。在第一阶段,晚种植导致叶片和茎秆炭疽病的AUDPC(病害进展曲线下面积)值更高。处理 3(综合管理方案)降低了豆荚中的发病率,比
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
尖镰孢属热带病原菌 4 号 (Foc TR4) 又称热带病原菌 4 号 (TR4),引起的枯萎病正在全球造成破坏,威胁着几乎所有的香蕉和大蕉生产商。TR4 无法用杀菌剂控制,也无法用熏蒸剂从土壤中根除。TR4 能够在土壤中存活数十年,其致命影响和广泛的寄主范围(包括卡文迪什品种)是其被列为香蕉生产最大威胁的主要原因。提高对抗病害的关键是提高对开发抗病品种相关概念的认识和理解,正确引进和抗病性评估。本次网络研讨会是世界香蕉论坛及其 TR4 全球网络组织的一系列能力建设和意识提升活动的一部分。之前的活动重点关注 TR4 诊断、能力建设和意识提升以及 TR4 抗性品种。此次网络研讨会旨在提供有关对 Foc TR4 具有耐受性或抗性的香蕉品种的更多信息,并讨论在引进和评估这些品种时需要考虑的重要方面。本次活动还将涵盖抗性评估所需的步骤,考虑到安全引进外来种质的检疫协议、指数化、种植材料繁殖、抗性试验的实验设计和抗性评估。活动录音可在网站上找到:https://www.fao.org/tr4gn/fao-in-action/webinars/
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。