摘要:过去几十年来,基因工程的进步使得开发出生产转基因动物的方法成为可能。转基因技术的发展为研究开辟了新的方向,也为其实际应用创造了可能性。生产转基因动物物种不仅旨在加速传统的育种计划,改善动物健康和食用动物产品质量,还可用于生物医学。动物研究旨在开发用于基因功能和调控研究以及某些人类疾病的遗传决定因素的模型。本综述中描述的另一个研究方向侧重于使用转基因动物作为高质量生物制药(如重组蛋白)的来源。讨论的另一个方面是使用转基因动物作为细胞、组织和器官的来源,以移植到人类受体中,即异种移植。许多研究表明,猪(Sus scrofa domestica)是最适合作为人类疾病研究模型和异种移植的最佳器官供体的物种。与其他牲畜相比,转基因猪的怀孕期短、世代间隔短和产仔数高使得转基因猪的生产耗时更少。本综述介绍了用于生物医学研究的转基因猪以及猪动物模型使用的未来挑战和前景。
摘要:2019年7月,一种疫苗衍生的重组猪生殖和呼吸综合征病毒1菌株(PRRSV-1)(Horsens菌株)感染了40多个丹麦母猪牛群,导致严重损失。在本研究中,评估了重组骑马菌株的致病性,并使用年轻的SPF猪中的特征良好的实验模型与参考PRRSV-1菌株进行了比较。此外,评估了三种不同的PRRSV-1 MLV疫苗的效率,以保护猪免受重组菌株的挑战。在挑战之后,与所有其他组相比,未接种疫苗的猪在血清中挑战了血清的病毒载量显着增加。在尸检时未观察到宏观变化,但是几乎所有猪的肺和扁桃体的组织都是PRRSV阳性的。与受到霍斯斯菌株挑战的未接种群体相比,所有接种疫苗的组中血清中的病毒负荷均低,并且在接种疫苗的组中只有很小的差异。本研究中的发现以及最近的另外两份报告表明,这种重组的“霍斯”菌株确实能够诱导成长中的猪以及与典型的PRRSV-1,Subtype 1菌株相当甚至超过的怀孕母猪的感染。然而,缺乏明显的临床体征和缺乏显着的宏观变化表明,这种菌株比以前表征的高毒性PRRSV-1菌株的毒力不那么毒。
靶向核酸酶等高精度基因组编辑工具的发展加速了人类基础医学、动物科学、动物育种以及疾病诊断等领域的进步(Doudna and Charpentier,2014;Kurtz 等,2021;Rieblinger 等,2021;Xie 等,2021)。尤其是被称为 CRISPR 技术的基因组编辑系统自首次报道以来发展迅速(Jinek 等,2012),成为最热门的技术之一。CRISPR/Cas9 技术可精准识别靶序列并实现高效的 DNA 切割,从而完成全基因组范围的基因敲除/敲入(Cong 等,2013;Koike-Yusa 等,2014)。但由于编辑过程中会发生双链断裂(DSB),该技术往往会引入大量不理想的InDel(插入和缺失)突变(Zhao et al.,2019)。随后,人们开发了碱基编辑器(BE),可以利用胞嘧啶脱氨酶或腺苷脱氨酶实现单核苷酸的精准编辑,而不会诱导DSB(Gaudelli et al.,2017;Rees and Liu,2018)。近来,引物编辑器(PE)进一步扩展了基于CRISPR的编辑工具包,可实现所有12种可能的碱基转换和短DNA片段的插入和缺失。该技术融合逆转录酶和Cas9蛋白,以引物编辑向导RNA(pegRNA)为修复模板,实现精准的基因编辑(Anzalone et al.,2019)。在这篇小型评论中,我们总结并讨论了 CRISPR 技术在猪中的最新应用。
摘要:基于自然减弱或转基因病毒的非洲猪发烧病毒(ASFV)的候选疫苗有可能产生保护性免疫反应,尽管在定义针对ASFV的保护性免疫反应方面尚无共识。研究,尤其是在明智的宿主物种中,专注于揭示保护机制的研究将有助于开发更安全,更有效的疫苗。本研究对表型和功能数据进行了详细的分析,这些数据对细胞内免疫感引起的细胞反应以及随后使用自然减弱的现场菌株LV17/WB/RIE1的自然减弱的家养猪的促进,以及对抗激内挑战的机制以及对抗激发攻击的机制,以抗抗性的II型II II II Armenia/07 Learteria。在免疫后观察到的血清中IL-8和IL-10的瞬态轻度至中度增加可能与存活直接相关。保护也与强大的ASFV特异性多功能记忆T细胞反应有关,其中CD4CD8和CD8 T细胞被鉴定为病毒特异性IFNγ和TNFα的主要细胞来源。与细胞因子反应并行,这些T细胞亚群还显示出特异性的细胞毒性活性,这是CD107A脱粒标记的表达增加所证明的。与病毒 - 特异性多功能CD4CD8和CD8 T反应一起,在免疫猪中挑战后观察到的抗原经历的细胞毒性CD4 T细胞的水平增加也可能通过杀死靶向感染抗原抗原细胞的机制来导致对控制的有毒感染。未来的研究应阐明本研究中是否证明了记忆T细胞反应是否持续存在,并为进一步的ASFV感染提供了长期保护。
随着生活水平的提高,慢性病和终末期器官衰竭已成为人类的常见现象。器官移植成为对抗慢性病和终末期器官衰竭的希望之一。然而,可供移植的器官远远不能满足需求,导致严重的器官短缺危机。为了解决这个问题,研究人员将猪作为研究对象,因为猪作为异种移植供体具有许多优势。猪被认为是人类异种移植的理想器官供体,但将猪器官直接移植给人面临许多障碍,例如超急性排斥反应、急性体液异种移植排斥反应、凝血失调、炎症反应、凝血失调和内源性猪逆转录病毒感染。已经开发出许多转基因策略来克服这些障碍。本综述概述了用于异种移植的转基因猪的最新进展。未来基于基因工程为异种移植提供安全有效的器官和组织仍然是我们的目标。
肾异种移植最近在克服其在人类中使用的障碍方面取得了长足的进步。由于使用了临床前猪对顶峰的模型,因此已经实现了这种进步。总体而言,肾异种移植长期以来与猪心(主要是由于其寿命维持性质)的生存率较低。然而,使用最新的遗传修饰猪供体菌株,加上控制抗孢子免疫反应和凝结的进展,现已实现了长达2年的生存。尽管长期以来一直认为猪对顶峰的组合被认为是对人类状况的完美反映,但它有几个局限性,尤其是在不同的天然抗孢子抗体方面。这一事实与被认为是先决条件的生存延长有关,导致一些开创性的团队越过人类应用。然而,在人类中的使用将保持轶事,并且在不使用非人类灵长类动物的情况下,将很难实现肾脏异种移植的进一步进展,而非人类灵长类动物将保持互补,尤其是在从未在人类中从未测试过的重大创新。
癌症的不可控性和转移性使其病情更加恶化和难以预测。因此,许多疗法和药物被用于控制和治疗癌症。然而,除此之外,许多药物会引起各种副作用。在美国,近 8% 的患者因副作用而入院。发达国家的癌症患者更多,这与他们的生活方式有关。有各种植物成分分子,其中白藜芦醇 (RSV) 是最适合癌症的分子,因为它对身体的不良影响明显较小。RSV 通过调节各种途径(如磷酸肌醇 3 激酶 (PI3K)/蛋白激酶 B (AKT)/哺乳动物雷帕霉素靶蛋白 (mTOR) 途径)来抑制细胞增殖的启动和进展。 RSV 降低了细胞周期调节蛋白(如细胞周期蛋白 E、细胞周期蛋白 D1 和增殖细胞核抗原 (PCNA))的水平,并诱导细胞色素 c 从线粒体释放,导致细胞凋亡或程序性细胞死亡 (PCD)。RSV 的巨大优势也带来了一些挑战,因此,RSV 在水中的溶解度较差,即 0.05 mg/mL。由于 RSV 被肝脏和肠道高度代谢,因此生物利用度较差。令人惊讶的是,RSV 代谢物也会诱导 RSV 的代谢。因此,尿液中以不变形式存在的 RSV 量明显减少。由于生物利用度差、水溶性较低以及在体内停留时间长等挑战,研究人员决定制造纳米载体以实现更好的递送。采用纳米制剂技术,局部渗透率提高 21%,纳米封装得到改善,从而使生物利用度和渗透性提高许多倍。因此,本综述描述了 RSV 及其用于提高抗癌活性的纳米制剂的完整概况以及专利调查。
我关心的是,你和你的读者都明白,《星报》的工作人员有时也会像他们的长辈一样犯错,成熟的判断往往很难做到,我们都生活在一个充满极端质疑和不确定性的时代,我们的大学——尽管它可能与世隔绝——但却与滋润全国每一所学校的文化潮流融为一体,浮躁的青年人和安定的老年人必须找到交流的领域,而且——最终——互相攻击、指责或责骂都不会解决任何问题。
Dao等。 发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。 Pegah等。 与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。 但是,Knop等人进行的一项研究。 证明白藜芦醇并未直接构成GLP-1的释放[25]。 白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。 蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。 因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。Dao等。发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。Pegah等。与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。但是,Knop等人进行的一项研究。证明白藜芦醇并未直接构成GLP-1的释放[25]。白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。
摘要:自17世纪以来,已经研究了涉及动物器官移植到人类短缺的人体中的异种移植,以解决人类器官短缺。早期尝试从山羊,狗和非人类灵长类动物等动物那里获得器官被证明没有成功。在1990年代,科学家们同意猪是最合适的供体动物。但是,猪和人之间的免疫排斥反应阻碍了应用。为了克服这些挑战,研究人员开发了遗传改性的猪,这些猪会失活异种反应性抗原基因并表达人类保护基因。这些进步在非人类灵长类动物中从几天到几年扩展了异种移植的生存,导致了第一次人类心脏异种移植试验。使用基因工程猪来进行器官短缺。本综述概述了与人与猪之间异种移植有关的免疫原性和功能蛋白的潜在不相容性。此外,它阐明了多重基因修饰的可能方法,以繁殖更好的人类化猪来进行临床异种移植。