SSAE 已经开发并发布了盐水储存地质分析评估 (GEESS) 地理数据库 - 这是一个公开的地理数据库,它描述了盐水层的独特地质参数,这些参数对于美国本土 48 个州的碳储存开发至关重要。高空间分辨率数据集(高达 5 公里网格间距)涵盖了从加利福尼亚到东海岸的 FECM/NETL CO 2 盐水储存成本模型 (CO2_S_COM) 中的 57 个潜在盐水储存层。它来自公开来源。以地层为基础捕获的数据包括深度、厚度、岩性、压力、温度、沉积环境、盐度、孔隙度、渗透率、结构状态和破裂压力。该数据集包括 CO 2 羽流大小的空间离散估计值和 CO 2 储存第一年盈亏平衡价格的估计值(有关风河盆地 Tensleep 地层的图表见下文)。鉴于该数据集的性质,它可以促进更准确的碳储存相关工作,例如在项目开发早期阶段进行储存资源潜力评估或二氧化碳注入成本估算。这个新发布的数据库由 SSAE 研究人员 Austin Mathews*、Jeffrey Eppink*、Dave Morgan 和 Tim Grant 开发,可在此处下载。2023 年 FECM / NETL 碳管理研究项目审查会议上展示的数据库概述可在此处获得。
拟议的电力容量增加通常集中在三个地区:堪萨斯城、乔普林和布希尔地区。密苏里州中部和东北部也有许多拟议项目。大多数拟议活动(64%)都是太阳能项目。太阳能项目的中位数为 200 兆瓦。风电项目占拟议投资的 21%,中位数为 235 兆瓦。电池装置可与太阳能或风能装置共存,以缓解能源供应的波动。在计划项目中,9% 有电池装置。不到 6% 的投资是拟议的天然气或水电项目。美国能源信息署报告称,建设和运营新容量的“盈亏平衡”成本在各种能源中是相当的。天然气项目的成本估计为每兆瓦 37.05 美元,太阳能项目为每兆瓦 36.09 美元,陆上风电项目为每兆瓦 37.80 美元。这意味着对可再生能源设施的投资可能会继续作为新的电力来源。虽然此地图上的大多数项目都是多年前提出的,但由于延长流程完成时间所涉及的风险等因素,并非所有项目都将完成。项目从连接请求到商业运营的典型时间约为四年,但与 2000 年至 2010 年期间连接的项目相比,该时间表增加了两年。其他资源和注释
要点 在 2024 年达到 4100 万工作小时 (+4%) 的新高度后,土木工程和道路行业将出现短期小幅放缓,因为与魁北克水电公司 2024 年行动计划相关的新项目将在未来几年内填满订单。工作小时数小幅下降至 4050 万工作小时 (-1%) 的原因是 2025 年和 2026 年道路系统支出减少。 2024 年,工业部门受到电池项目的刺激,比 2023 年增长 24%。2025 年,上升趋势将继续,活动量将增加 14%,这将转化为 1650 万工作小时。然而,目前电池行业存在一些不确定性。过去三年,魁北克基础设施计划的投资在 2004 年达到了机构建设的顶峰,因此预计机构和商业部门将小幅回落 -2.1%,预计工作时间为 116.5 小时。同样包括在这一领域的高层住宅建设也将在 2025 年放缓,因为此类项目的住房开工数量较少,这一数量在 2023 年触底,并将继续对未来产生影响。住宅行业将走出低迷:预计增长 7%,工作时间为 3800 万小时。住房需求和盈亏平衡利率的回归将推动该行业上涨。预计 2025 年将有 48,000 套住房开工。对工人的需求仍然很高
摘要 —本文利用实际数据讨论了光伏 (PV) 系统与电池储能系统 (BESS) 的优化设计。具体来说,我们确定了光伏板的最佳尺寸、BESS 的最佳容量以及 BESS 充电/放电的最佳调度,以使包括电费和光伏系统在内的长期总成本最小化。优化是通过考虑大量参数来执行的,例如能源使用、能源成本、天气、地理位置、通货膨胀以及太阳能电池板和 BESS 的成本、效率和老化效应。为了捕捉老化效应、通货膨胀和折现经济回报等长期因素的影响,该问题被表述为混合整数非线性规划 (MINLP) 问题,时间范围涵盖太阳能电池板和 BESS 的整个生命周期,约为十年或更长时间,而几乎所有现有的光伏系统设计工作都考虑了几天或几周的短得多的时间范围。将 MINLP 转化为混合整数线性规划 (MILP),并通过分支定界 (B&B) 算法进行求解。由于时间范围较长,MILP 的复杂度较高。然后,使用动态规划提出了一种新的低复杂度算法,其中表明 MINLP 问题可以转化为满足贝尔曼最优原理的问题。将新开发的算法应用于旧金山商业用户的实际数据表明,该系统在第 66 个月达到盈亏平衡点,并将系统总成本降低了 29.3%。
量子纠错 [1–4] 通过将多个物理量子位组合成一个逻辑量子位,为实现实用量子计算提供了一条途径,随着更多量子位的添加,逻辑错误率会呈指数级抑制。然而,只有当物理错误率低于临界阈值时,这种指数级抑制才会发生。在这里,我们在最新一代超导处理器 Willow 上展示了两个低于阈值的表面代码存储器:距离为 7 的代码和集成了实时解码器的距离为 5 的代码。当代码距离增加两倍时,我们更大的量子存储器的逻辑错误率被抑制了 Λ = 2.14 ± 0.02 倍,最终得到一个 101 量子位距离为 7 的代码,每个纠错周期的错误率为 0.143% ± 0.003%。这种逻辑存储器也超出了盈亏平衡点,是其最佳物理量子位的寿命的 2 倍。 4 ± 0 . 3. 我们的系统在实时解码时保持低于阈值的性能,在距离为 5 时实现平均 63 µ s 的解码器延迟,最多可进行一百万次循环,循环时间为 1.1 µ s。我们还运行距离为 29 的重复代码,发现逻辑性能受到每小时约一次或 3 × 10 9 次循环发生的罕见相关错误事件的限制。我们的结果表明,如果扩展,设备性能可以实现大规模容错量子算法的操作要求。
本研究对清真寺建筑的绿色改造进行了全面的生命周期成本分析 (LCC),评估了其财务可行性和绩效。研究涉及三个关键阶段的风险评估:前期、施工期和施工后。验证过程采用李克特量表,基于 51 位参与绿色建筑改造项目的专家的回复。结果表明,风险最高发生在施工期间,影响投资绩效。敏感性分析揭示了投资的潜在寿命,施工前风险影响第 18 年的净现值 (NPV),施工后风险在第 17 年被证明是可行的。该研究引入了 NPV、内部收益率 (IRR)、成本效益比 (BCR) 和盈亏平衡点 (BEP) 等基准来进行投资评估。太阳能电池板和节能公用设施等绿色改造项目的财务可行性已得到确认,净现值为 140,797,698 印尼盾,内部收益率为 10.26%,BCR 为 2.21,可行性在第 17 年实现。通过龙卷风图进行风险可视化强调了每个风险阶段对净现值的重要性。最后,该研究建议进行更广泛的案例研究,涉及多个经过认证的绿色清真寺,以更准确地识别风险。这项研究为清真寺建设绿色项目的明智投资决策提供了宝贵的见解,强调了风险管理对长期可持续性的重要性。
低温电气化是超导技术与低温工程相结合提供的解决方案,有助于解决电网和运输领域的全球变暖、污染、排放、损失等问题,实现许多净零排放计划的目标 [1]。超导变压器是电网低温电气化最有前途的应用之一,因为与传统变压器相比,超导变压器重量更轻(2 到 3 倍)、更紧凑(3 到 5 倍)、效率更高(高达 5%),过载耐受性更强 [2]。此外,超导变压器对环境的影响比传统的油浸式变压器要小,因为超导绕组需要浸入无毒无害的液氮 (LN2) 中。因此,通过省去这种变压器中的油,可以完全消除因油过热引起爆炸的风险。另一方面,与传统变压器相比,这将提高超导变压器的可靠性。这些优势为在高功率应用中实施超导变压器或为敏感负载供电,用传统的油浸式变压器取代它们铺平了道路。目前,使用超导变压器的盈亏平衡为 25 MVA,但随着带/线生产技术的进步以及制造技术的进步,这一功率将在本十年进一步下降。除了超导带制造挑战之外,其他挑战也减缓了超导变压器技术的发展进程,包括容错问题 [3- 4]、绕组低温恒温器制造的线圈架生产成本高以及高效的冷却系统设计。许多研究人员和公司正在努力解决上述挑战,以使超导变压器成为电网的可行商业化组件,并提高其与传统油浸式变压器的竞争力。大多数努力都集中在带生产上
计算机科学工程系 2,3 Dronacharya 机构集团,大诺伊达,北方邦,印度 摘要:无论是在商业领域还是在公共生活中,人们总是希望确保自己的自由——言论自由、交流自由,最重要的是选择自由。然而,这种自由的概念很少扩展到消费者知识的视角。毕竟,顾客是人,自由是购物和饮食概念的核心。欢迎来到人工智能 (AI) 的世界。当人工智能与客户体验相结合时,它可以创建客户旅程,让客户拥有自己的体验,最终带来更多的代理和更满意的客户。当今,在业务效率中最重要的是客户关系管理以及为他们提供业务解决方案所需的时间。盈亏图在很大程度上取决于用户对公司或组织的信任和体验。了解在教育、银行、电信、软件解决方案公司等各个领域使用 ERP 系统的重要性在当今的 IT 行业是众所周知的。从自助餐厅的收入和成果到公司的收入和营业额到借方和贷方;从学生的细节到学生在特定学科的学术表现,一切都可以通过开源软件 SAP 实现。实施与人工智能集成的 SAP 的强大功能可以提高公司的效率。据 SAP 称,Gartner 的最新报告指出,“到 2023 年,处于数字化转型高级阶段的组织将发现,糟糕的客户体验是他们继续成功的最大障碍。”客户误解可能是由于无法有效管理投诉、误解客户反馈以及忽视客户偏好造成的。需要缩小自由与技术之间的差距。如果将人工智能与 SAP 集成,它可以缩小这一差距。关键词:SAP
开发了一个炼油厂建模框架,以估算将高质量生物燃料直接与炼油厂汽油成分混合以生产优质燃料的效益。研究结果提供了一种范式的变化 - 生物燃料不是化石燃料的竞争对手,而是可以为炼油厂的产品结构增加价值,因为它具有良好的特性。这个潜在价值可以通过计算盈亏平衡值 (BEV) 来表征,定义如下。提出的建模框架结合了来自 (1) 未来几十年的预计产品需求、(2) 原油和炼油产品定价以及 (3) 燃料规格的大量数据。完整的炼油厂模型可作为评估生物燃料价值的基础,假设代表性石油炼油厂配置的盈利能力保持不变。考虑到混合水平和原油价格,得出的估值差异很大,BEV 在 10 至 120 美元/桶之间。此外,BEV 与燃料辛烷值(如辛烷值(研究法,RON 和马达法辛烷值,MON)和抗爆指数(AKI,RON 和 MON 的平均值)以及敏感度(S,RON 和 MON 之间的差异))相关,与敏感度的相关性略高。然而,在一切照旧的情况下,未来几年汽油需求的预期下降可能会对生物燃料的需求和价值产生负面影响。分析还显示,小型炼油厂的估值较高,因为它们可以增强生产特种高价值燃料/产品的能力,并将高辛烷值桶引入原本受限的混合操作。对炼油厂的其他影响包括重新平衡运营的机会、进入高价值燃料市场的机会以及与更广泛的运输行业趋势同步的机会。此外,结果表明,Co-Optima 增强火花点火 (BSI) 效率提升的价值可以扩展到炼油厂,以激励脱碳和多样化原料生产。
计划摘要(摘要在第 3 页) 研讨会第一天:7 月 9 日星期二@量子计算研究所 08.45 - 09.00:欢迎 09.00 - 09.40:Maciej Lewenstein 小组:Pavel Popov 标题:使用量子计算机系统的格点规范理论的量子模拟 09.40 - 10.20:Ray Laflamme 小组:Cristina Rodriquez、Matt Graydon 标题:柏拉图式量子基准测试 10:20 - 10:50:咖啡休息(30 分钟) 10.50 - 11.30:Michel Devoret 小组:Benjamin Brock 标题:超越盈亏平衡的玻色子量子计算机的量子误差校正 11.30 - 12:10:Irfan Siddiqi 小组:Noah Goss、Larry Chen 标题:纠缠超导量子计算机12.10 - 12.50:Barry Sanders 标题:小猫、猫、梳子和指南针:叠加相干态 12.50 - 14.00:午餐休息 (70 分钟) 14.00 - 14.40:Hubert de Guise 标题:d 维幺正的简单因式分解和其他“良好”属性 14.40 - 15.20:Sahel Ashhab 标题:优化高维量子信息控制:(1) 量子三元组控制和 (2) 具有弱非谐量子比特的双量子比特门的速度限制 15.20 - 16.00:Martin Ringbauer 标题:使用囚禁离子量子比特的量子计算和模拟 16.00 - 16.30:咖啡休息 (30 分钟) 16.30 - 17.10:Adrian Lupascu 标题:控制和过程超导量子三元材料的特性分析 17.10 - 17.50:Susanne Yelin 题目:量子化学与量子计算机 18.00 - 20.00 = 海报展示 + 手持食物