SQM 太阳盐的排放强度因子是通过计算太阳盐生产过程中释放的平均温室气体排放量,然后将其与各个 CSP 工厂在 30 年内向电网产生的总电能联系起来确定的。SQM 计算出的太阳盐碳足迹平均值为 0.60 kgCO2eq/kg 太阳盐。该值可以洞悉太阳盐生产对环境的影响,而这只是 CSP 工厂整体碳足迹的一个方面。
摘要:地下盐穴被广泛应用于天然气、压缩空气、石油、氢气等大型储能设施。为了快速建设大型天然气储量,建立了一种独特的建设方法,即利用盐穴水采后遗留的既有盐穴建设储能设施。2007年,该方法首次应用于中国金坛天然气储能设施。在此成功的基础上,我国又筛选出多个既有盐穴用于建设储能设施。工程经验表明,如何从众多的可用盐穴中筛选出最合适的盐穴并进行验证是盐穴再利用成功的关键。本文总结和评述了相关理论与测试方法,包括:(1)利用既有盐穴建设储能设施的初步选择原则,(2)既有盐穴密封性的测试方法与评价理论,(3)我国利用既有盐穴建设储能设施的典型工程案例。从实际应用结果来看,本文提出的优选原则可以快速筛选出具有储能潜力的现有盐穴,且注卤法可以有效评价其密封性,为后续大规模实施现有盐穴利用项目提供了技术路线。
海洋循环对地球的气候产生了很大的影响,尤其是通过将热量运送到欧洲。淡水供应向北大西洋和北欧海洋的变化已被认为在海洋循环发生变化背后具有驱动作用,从而导致了过去的气候变化。这一直是令人关注的原因,并且广泛讨论了当前大西洋子午翻转循环的崩溃。提示突然的气候变化的建议理论是Stommel的经典盒子模型,它连接到热盐循环。热盐循环与密度差异有关,并通过影响温度和盐度的物理过程维护。源自温度和盐度对驾驶密度差异有相反的影响,斯梅尔的理论解释了可能的含义,例如不同的海洋循环系统,这可能是稳定或不稳定的。本文涉及淡水供应如何影响热盐循环。Stommel关于海洋系统双重稳定性的理论应用于热盐循环和古气候。Stommel的理论可以解释在年轻的Dryas时期的海洋循环的“关闭”,从而引起准周期性的Dansgaard-Oeschger事件,并以半球之间的Seesaw效应。总而言之,斯梅尔的简单盒子模型为热盐囊性提供了概念图,这可能是过去气候变化的关键因素,但在不久的将来不太可能导致突然的变化。
热立方体采用即插即用设计,包括一系列通过可再生能源加热熔盐的罐。该系统提供的关键优势是,在可再生能源发电量高且价格低廉时,热电池会充电,即将电能转化为热能并储存起来。每当工业需要热量或在电价高涨的时段,储存的热量可用于生产蒸汽,用于工艺热或发电。该公司有两种商业模式。在热即服务模式下,公司与客户签订热购买协议,热立方体由京都或其指定合作伙伴运营。在热即产品模式下,公司直接向客户销售热立方体,同时为产品提供服务和支持。
1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847)TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 能源部员工、能源部承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
摘要目的:多发性磁共振(MR)图像的存在增加了可用于诊断和治疗脑癌患者的临床信息水平。但是,获取完整的多元图像MR图像的完整集并不总是可行的。在这项研究中,我们开发了一种最先进的深度学习卷积神经网络(CNN),用于跨三个标准的MRI对比度,用于大脑的三个标准MRI对比度。方法:在本研究中使用了477例临床诊断患有神经胶质瘤脑癌的477例患者的BRATS'2018 MRI数据集,每位患者患有T1加权(T1),T2加权(T2)和FLAIR对比度。分别将其分别分为64%,16%和20%,分别为培训,验证和测试集。我们开发了一个U-NET模型,以学习与三个MRI对比度的目标图像对比的源图像的非线性映射。使用于点误差(MSE)成本函数,0.001学习率的ADAM优化器和120个时期,批次大小为32。通过计算MSE,平均绝对误差(MAE),峰值信噪比(PSNR)和结构相似性指数(SSIM)来评估生成的合成MR图像。结果:与我们的模型一起生成的合成-MR图像几乎与测试数据集上的真实图像有关所有翻译的区别,除了合成的素质图像的质量略低,并且显示出细节的丢失。我们的结果与Brats数据集上其他深度学习模型的最佳报告结果一样好。六个翻译中平均PSNR,MSE,MAE和SSIM值的范围分别为29.44–33.25 dB,0.0005–0.0012,0.0086–0.0149和0.932–0.946。结论:我们的U-NET模型表明,它可以在跨大脑MRI对比度上准确地执行图像图像翻译。由于多重激发MRIS的可用性,这种方法可能在改善临床决策和更好地诊断脑癌患者的临床使用方面具有很大的希望。这种方法可能在临床上相关,并设定明显的步骤以有效地填充没有其他MR序列的缺乏空隙。
摘要 热能储存是节约能源和优化整体效率的重要因素。开发本地能源储存系统需要一些有关原材料的信息,而原材料在当地市场上供应充足。本研究旨在调查亚齐传统生产的盐的特性,以了解其作为热能储存原材料的潜在用途。样品取自亚齐大区,在马弗炉中以 400°C 和 800°C 的温度加热处理。进行这种处理是为了研究性质的变化并确定盐制备的最佳程序。所有样品都经过多种技术表征,包括 XRF、XRD、SEM/EDS、TGA/DSC 分析、密度、热导率和电解电导率。XRF 表征表明,当地的亚齐盐被评为 III 类盐。此外,根据 TGA/DSC 表征,熔化温度接近 800°C,焓值接近 492 kJ/kg。亚齐盐可作为热能储存材料的证据已经足够,此外,提高亚齐盐的热处理温度有助于提高其焓值、晶体尺寸、密度、热导率和电解质电导率。
当吸湿盐(MgSO4,xH2O)分布在具有足够的层次化孔隙率的氧化锆陶瓷基质中时,其用于热化学储能的性能可以大大提高。基质材料采用增材制造技术(robocasting)与造孔剂添加和部分烧结相结合的方式制造,以获得三级孔隙率(孔径分布在 3 个十年内,从 200 纳米到 200 微米)。然后通过用水性盐溶液渗透基质材料来获得复合材料。孔隙率使基质材料中储存的盐量及其与水蒸气的可及性最大化,从而产生潜在的高能量密度(高达 420 kWh·m -3 ),而不会在水合/脱水循环中损失效率。
我们报告了一项系统的研究,该系统研究盐浓度及其阳离子价对模型的混合物的多种等分和转运性能,其混合物具有单价(Lino 3)的硝酸盐(lino 3),二价(mg(no 3)2和Ca(no 3)2和Ca(no 3)2)和(no 3)3)salts。由适当的实验技术确定的这些特性包括密度,声速,折射率,表面张力,电导率和粘度。单粒子动力学和径向分布函数也通过分子动力学模拟进行了分析。在Vogel-Fulcher-Tammann框架中研究了电导率的温度依赖性,我们获得了有效的激活能量,脆弱性指数和Vogel温度。此外,我们进行了高温Arrhenius分析,并计算了电导率和粘度的激活能。最后,获得了不同混合物的分数Walden规则的指数,并分析了系统的离子和脆弱性,证明所有混合物都是亚离子和脆弱的。在其第一个溶剂化壳中建立的由添加盐的阳离子和硝酸盐阴离子组成的长寿命阴离子聚集体的氢键网络的变形以及长寿命的阴离子聚集体的形成是对分析特性产生的深影响。细节分析了盐阳离子的表面电荷密度对溶液的结构和运输特性的作用,并与离子液体极性纳米孔(纳米结构溶剂化)中盐物质的溶剂化有关。2022作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
注意:这是作者的作品版本,该作品被接受在《电力杂志》中发表。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本:J。Power Sounce 196(2011)8696-8700。doi:10.1016/j.jpowsour.2011.06.0333
