机器学习是人工智能的一部分,涉及开发算法,使计算机可以根据数据学习和进行预测。与传统的编程不同,在为每个任务编码特定的说明时,ML算法确定数据中的模式并随着时间的推移提高其性能。此功能对于从自然语言处理和图像识别到自动驾驶汽车和预测分析的应用至关重要。应用数学在此过程中起着至关重要的作用,提供了开发,分析和优化ML算法所需的工具和框架。从线性代数和微积分到概率和优化,数学概念是理解和推进机器学习技术不可或缺的[1]。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
辐射后检查通常会利用各种样本制备,检查和分析方法;在大多数情况下,需要远程处理和屏蔽才能保护工人或敏感仪器免受辐射危害。在辐照检查期间获得的数据得到了对辐射条件,制造参数和其他相关信息的先验知识,这些信息可以在反应堆操作期间或出院后不久获得。辐射后检查对当前和下一代反应器燃料和材料的发展,资格和持续监视至关重要。辐射后考试的重要性扩展到其他应用程序,包括但不限于为代码或模型验证和验证提供支持数据,进一步开发燃料和燃料组件,以最大程度地提高绩效,提取和从用过的燃料中的同位素研究以进行健康和空间应用程序,以及开发短期和长期燃料储存和长期燃料和/或/或以/或/或以上的储存解决方案。