摘要 — 提出了一种基于分布式磁传感器磁异常检测的新型车辆定位与跟踪方法。首先,利用总磁场,本文提出了一种不受旋转振动影响的总场匹配 (TFM) 方法来执行目标定位。我们不直接反转非线性磁偶极子方程,而是使用 TFM 方法来找到次优目标位置,然后应用线性卡尔曼滤波器跟踪目标。因为目标动力学与定位方程之间是线性关系。通过模拟进行案例研究,得出估计轨迹 (d, ϕ) = (70.8 m, 44.9°),该轨迹与实际轨迹 (d, ϕ) = (70.5 m, 45°) 非常吻合。对于车辆跟踪,户外实验结果显示基于四种不同的传感器网络配置的估计精度较高。
社交媒体曾被视为民主的重要推动者,如今却被指责为民主弊病的根源。人们批评社交媒体传播虚假信息、挑拨离间、操纵公民和破坏民主制度。社交媒体对民主为何重要?社交媒体对民主的不同维度(如政治参与、选举进程和民主制度)构成的主要风险是什么?算法的作用是什么?对社交媒体的各种担忧在多大程度上得到了经验证据的支持?本分析概述了社交媒体对民主构成的主要风险,这些风险与监视、个性化、虚假信息、适度化和微目标定位有关。此外,它还讨论了在欧盟相关立法和政策工作的背景下应对社交媒体对民主的风险的关键方法。
摘要:磁传感器元件的准确测量一直是磁场应用中的重要问题,但传感器系统中存在不可避免的误差,在使用前需要进行校正。常见的标量校正方法难以对传感器元件进行有效校正,因为它需要均匀稳定的背景磁场,并且依赖于磁场模量。因此,设计了一套可用于传感器矢量校正的三轴亥姆霍兹线圈,以产生受控的标准磁场。分析了线圈的设计指标、均匀区大小以及磁场与电流的关系,为传感器元件的有效校准提供依据。测量结果表明,本文设计的线圈的均匀区大小和磁场精度满足设计要求。同时,利用该线圈进行传感器阵列标定和磁目标定位,使传感器误差降低了3个数量级,磁目标定位精度达到0.1m,实用效果良好。
自 2006 年 6 月 8 日版本以来,以下出版物已修订或开发:AFDD 2 作战和组织、AFDD 2-2 太空作战、AFDD 2-1.3 反陆作战和 AFDD 2-1.9 目标定位。注意:空军术语表可在 https://www.doctrine.af.mil/Main.asp(左下角第四个选项)在线访问。随着术语变化在理论中发布,它们会被添加到互联网版本中,使空军术语表的互联网版本更加及时。取代:AFDD 1-2,2006 年 6 月 8 日 OPR:HQ AFDC/DD 认证人:HQ AFDC/DD (Col Jon Wolfe) 页数:77 可访问性:可在电子出版网站 www.e-publishing.af.mil 下载 可发布性:此出版物无可发布性限制 批准人:Allen G. Peck,少将,美国空军司令,空军条令中心
从生物复合眼中获得灵感,人造视觉系统具有生动的各种视觉功能性状,最近才脱颖而出。然而,大多数这些人造系统都依赖于可转换的电子设备,这些电子设备遭受了全局变形的复杂性和约束几何形状,以及光学和检测器单元之间的潜在不匹配。在这里,我们提出了独特的针孔复合眼,将三维印刷的蜂窝光学结构与半球形,全稳态,高密度的钙钛矿纳米纳米型光电探测器阵列结合在一起。无镜头的针孔结构可以使用任意布局设计和制造,以匹配基础图像传感器。光学模拟和成像结果彼此良好,并证实了我们系统的关键特性和功能,其中包括超级视野,准确的目标定位和运动跟踪功能。我们通过成功完成移动的目标跟踪任务,进一步证明了我们独特的复合眼对先进的机器人视觉的潜力。
动态目标定位 (DT) 是一种航天器自主概念,其中传感器数据被获取并快速分析,并用于驱动后续观察。我们描述了这种方法的低地球轨道应用,其中分析前瞻图像以检测云、热异常或陆地用例,以推动更高质量的近天底成像。这种能力的用例包括:云避开、风暴搜寻、搜索行星边界层事件、羽流研究等。DT 概念需要前瞻传感器或敏捷性以在这种模式下使用主传感器、边缘计算以快速分析机载图像以及主后续传感器。此外,可以利用卫星间或低延迟通信链路进行跨平台任务处理。我们描述了正在进行的实施,以便在 2025 年初在 CogniSAT-6(Ubotica/Open Cosmos)航天器上飞行 DT,该航天器于 2024 年 3 月在 SpaceX Transporter-10 发射中发射。
声纳浮标是一种消耗性声纳系统,通常从飞机或船舶部署,用于反潜战作业或水下声学研究。检测、分类、定位和跟踪是声纳操作员的四项基本任务。其中,通过单个被动或主动声纳系统对潜在接触的初步检测是第一个,通常也是最困难的。这是由于水下声音传播模式复杂、环境噪声源的存在以及现代常规潜艇辐射噪声的减少。因此,在单个或多个地理上分离的平台上集成来自多个传感器系统的数据被广泛认为是解决此问题的有效策略。如 [1] 中所述,声纳数据集成可以在各个级别执行,包括原始数据级别、检测级别、信息级别和显示级别。每种类型的集成在一定程度上都有利于声纳操作员执行四项基本任务中的一项或多项。例如,集成来自空间上不同位置的多个传感器的数据可大大提高目标定位和目标运动分析的准确性。与线性阵列(例如
序列特异性DNA结合的工具为研究生物学和作物发展中的基本问题开辟了新方法。虽然有几个平台可供选择,但最新的特定目标定位工具的许多进展集中在开发群集定期散布的短篇小说palindromic repots-crispr ciss-crispr ciss-criss(CRISPR-CAS)基于基于的系统。使用催化无效的CAS蛋白(DCA),该系统可以作为不同模块化催化域(效应域)的矢量来控制基因的表达或改变表观遗传标记,例如DNA甲基化。开发CRISPR-DCAS系统的最新趋势包括创建可以针对单个站点的效应域副本的版本,以靶向表观遗传变化,在某些情况下,这些变化可以在没有靶向构建体并结合效应域并将策略结合起来的策略中遗传到下一代,从而可以提高功能性或效果。本综述总结并比较了DNA靶向技术,用于靶向转录控制和Epi-rageNESES的效应域以及植物中使用的不同CRISPR-DCAS系统。
乌克兰和加沙冲突中军事人工智能引发伦理问题的直接相关例子。以色列正在使用人工智能生成间接火力的目标报告,乌克兰冲突双方都在使用自主巡飞弹药。2 在实施这些技术时确实存在一些复杂因素,例如反无人机系统电子战的广泛使用,但这些不在本文的讨论范围内。3 重点是这些人工智能系统与经过训练的使用相比如何运作。美国犹太国家安全研究所 2021 年关于 2021 年加沙冲突的一份报告讨论了以色列目标定位人工智能的优势,英文称为“Gospel”。这种人工智能与 2023 年 10 月开始的持续加沙冲突中使用的人工智能相同。最显着的优势是无与伦比的数据处理和推荐目标的能力。事实证明,Gospel 比传统的人类分析师目标定位系统快 50 倍。然而,由于缺乏公平的数据集工程,出现了严重的伦理问题。4 美国犹太国家安全研究所报告
• 对战略性美国/盟军系统的脆弱性进行评估,从而制定提高生存能力的战略。为评估培训计划、工程设计和新施工实践提供意见,以支持合理的部队保护、脆弱性缓解和集体保护原则。 • 为作战人员开发大规模杀伤性武器分析和模拟工具,包括目标规划和评估;危险材料运输和附带影响预测;后果评估;以及反恐/部队保护。 • 开发和应用最先进的核武器效果模型,以支持核武器管理和系统硬度设计。 • 开发、维护和使用独特的国防部测试和模拟设施(包括基础设施)和使能技术,用于评估常规、核武器和其他特殊武器在敌对环境中对军事或民用系统或目标的影响。 • 检查现有的美国/盟军能力,以将加固的、深埋的目标置于危险之中;评估针对已知或预计的潜在目标的能力;并评估新技术可能应用于已知不足之处。 • 为作战人员提供目标定位和情报界 (IC) 支持,提供敌对外国系统的功能脆弱性评估。