该设备现在位于国家标准局,并已用于多项调查。对该系统的一个反对意见是它所用的线太短。文件。线的长度在目标平面上约为 2 毫米,因为它们位于 35 毫米胶片的声道上。与其尝试制作具有较大线长的正弦波目标,不如尝试利用方波目标并以较慢的速度扫描它,以便记录每条单独的线和空间。方波目标很容易获得,线长为 8 英寸。并且,如果使用长目标线,相对而言较短的扫描狭缝,则扫描狭缝会屏蔽掉长线图像的末端效应。简而言之,这里开发了一种使用微光度计研究长线目标空间图像的方法。透明度。这
摘要。这篇由两部分组成的论文的第二部分使用波动光学模拟来研究与湍流和时间相关热晕 (TDTB) 相关的蒙特卡罗平均值。目标是研究湍流热晕相互作用 (TTBI)。在接近 1 μ m 的波长下,TTBI 会增加高功率激光束通过分布式大气像差传播时产生的建设性和破坏性干扰(即闪烁)的量。因此,我们使用球面波 Rytov 数、风清除周期数和畸变数来衡量模拟湍流和 TDTB 的强度。这些参数在给定具有恒定大气条件的传播路径时非常有用。此外,我们使用对数振幅方差和分支点密度来量化 TTBI 的影响。这些指标来自点源信标通过模拟湍流和 TDTB 从目标平面反向传播到源平面。总体而言,结果表明,由于 TTBI,对数振幅方差和分支点密度显著增加。这一结果对执行相位补偿的光束控制系统构成了重大问题。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081805]
图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51