提出了一种利用潜艇导航系统和声纳浮标测量潜艇在航行过程中目标强度的方法。直接序列扩频信号通过甚高频传输到遥测中继声纳浮标,后者以声学方式重新传输信号。标准声纳浮标接收信号并将其中继到数据记录器。使用高稳定性时钟同步发射器和接收器,可以通过直接和反射声路径在声纳浮标发射器和接收器之间进行精确的飞行时间测量。需要知道这三个物体的位置,以区分目标和表面反射,并测量源、目标和接收器之间的双基地角度。目标的位置由潜艇惯性导航系统估计,其他物体的位置则以潜艇位置为参考进行估计,并在潜艇移动时随时间构建基线。通过比较从直接路径和反射路径接收的信号与参考信号的相关性来计算目标强度。该技术可以在负 SNR 环境中进行目标强度测量。描述了该方法的实施,并给出了操作场景模拟的结果。
商业海洋活动推动了对海底设备定位和重新定位技术解决方案的需求。传统解决方案通常涉及通过对多个发射器进行距离测量来进行定位,但这些有源设备包含需要定期维护的电池。因此,使用被动声纳反射器作为导航和定位辅助设备是可取的。其实用性的基础是它们反射声纳能量的能力,以目标强度量化。以 SonarBell 为代表的商业被动反射器技术的最新进展使其成为水下定位的实用技术。在本研究中,介绍了被动声纳反射器和 SonarBell 的声学特性。基本声纳方程分析的结果和水箱中宽带校准测量的目标强度估计了使用 SonarBell 在定位系统中可以实现的性能。两次现场测试的记录表明 SonarBell 正在实际使用中。
商业海上活动推动了对海底设备定位和重新安置技术解决方案的需求。传统解决方案通常涉及通过对多个发射器进行距离测量来进行定位,但这些有源设备包含需要定期维护的电池。因此,使用被动声纳反射器作为导航和定位辅助设备是可取的。其实用性的根本在于它们反射声纳能量(量化为目标强度)的能力。以 SonarBell 为代表的商用被动反射器技术的最新进展使其成为一种实用的水下定位技术。在本文中,介绍了被动声纳反射器和 SonarBell 的声学特性。基本声纳方程分析的结果和水箱中宽带校准测量的目标强度估计了使用 SonarBell 在定位系统中可以实现的性能。两次现场测试的记录表明 SonarBell 正在得到实际应用。
在主动模式下,改进包括引入啁啾探测脉冲和匹配接收。通过降低表面混响水平,声纳的探测范围可以显著增加。显示使用真实全景图,带有彩色目标强度展示和回波包络(A 型显示)和电子放大镜(缩放功能)。通过引入与提供导航数据和传输目标信息的机载指挥系统的通信,两个系统都可以自动直观地表示当前的战术情况,即检测到的物体的移动。图 5 给出了显示的示例以及它如何表示目标的路线。这大大加快并改善了直升机与船舶和直升机与直升机之间的通信过程。
世界上最高的能量krypton氟化物激光器,耐克激光器在目标强度高达2x1015 w/cm2的靶标上可提供3 kJ的深紫外线激光器。它具有最短的波长(λ= 248 nm),并且能够在所有高能激光器设备中产生最均匀的目标照明(D I/I <0.2%)。这些特征在目标上产生了高度均匀的消融压力,可以在高达2000万个气氛的压力下进行良好控制的实验。
“ARD 进行的测试促进了潜艇系统和功能的诸多改进,包括推进器、船首区域设计、处理、声纳系统等,”测试运营经理 Steve Finley 说道。“湖上有四个主要测试场。最古老的一个是浮力车辆测试场,它由下拉装置组成,将模型拉到湖底以获取船上数据。LSV 测试场类似于全尺寸潜艇测试场;它有两个垂直阵列,LSV 在它们之间运行,用于进行辐射噪声测量。ISMS 测试场是世界上最复杂的水下结构。它由 158 个水听器和 36 个投影仪组成——所有这些都是为了在必要时进行目标强度测量
海军系统工程局 海军海上系统司令部 船舶完整性与性能工程组主任 Lattner 先生是海军海上系统司令部、海军系统工程局船舶完整性与性能工程 (SEA 05P) 的主任、技术领域经理和副授权官。在这个职位上,他负责领导和管理一支由 100 多名政府、军事和承包商人员组成的队伍,其中包括 38 名技术授权持有人,并监督作战中心 1000 多名人员能力领域的技术授权执行情况。核心工程功能包括水面舰艇、潜艇和航空母舰特征和敏感性、脆弱性、冲击、损害控制和消防、化学-生物防御、舰艇和潜艇结构完整性、结构深潜系统、腐蚀控制、金属和非金属材料、焊接、燃料和润滑剂、环境保护、重量、稳定性、流体动力学和所有现役和新采购舰艇和潜艇的布置。他向副指挥官/总工程师和海军系统工程局执行主任汇报。Lattner 先生的职业生涯始于 David Taylor 海军舰艇研究与开发中心(现为海军水面作战中心卡德罗克分部),担任项目工程师,负责目标强度降低和先进的潜艇制造技术。在他的职业生涯中,他担任过各种关键领导职务,责任、权力和义务的水平显著提高。其中包括 SEAWOLF 目标强度降低项目经理、指挥标准执行项目副经理、水面舰艇声学和非金属材料技术主管、材料部门负责人以及涂装卓越中心和海上环境质量项目经理。2019 年,Lattner 先生被选为海军海上系统司令部船舶完整性和性能工程组副组长。Lattner 先生拥有纽约州立大学布法罗分校机械工程学士学位和乔治华盛顿大学工程管理硕士学位。
概述 声纳校准和训练系统 (SONCAT™) 是用于测试海上声纳的真实模拟目标系统。该系统由两个主要部分组成: 1. GPS 定位、电池供电的浮标,包含所有必要的电子设备,用于接收、延迟和重新发送 3kHz – 60kHz 频段的声纳脉冲,从而模拟声纳目标。 2. 基于 PC、GPS 定位的 SONCAT 控制站 (SCS),用于控制、显示浮标参数和记录操作。两个单元使用无线电链路进行通信。浮标接收声纳脉冲,将其存储在本地内存中,并在操作员选择的延时后以多普勒频移和选定的目标强度重新发送。还可以结合雷达反射器回波和浮标的 GPS 位置来检查船舶雷达的距离和方位
摘要:1999 年 9 月,在纳米比亚本格拉的一次巡航中,我们结合远洋拖网采样凝胶状大型浮游动物,收集了多频率声学数据(18、38 和 120 kHz)。采样主要针对钵水母 Chrysaora hysoscella 和水生水母 Aequorea aequorea,这两种水生水母数量庞大,可能具有重大的生态重要性,并且会阻碍远洋捕鱼和钻石开采活动。C. hysoscella 主要在近海站发现,而 A. aequorea 在离岸较远的深水区数量最多。回声测深仪观测结果与网捕量直接相关,并确定了两个物种在每个频率下的捕捞密度(个体数/m 3 )和海域散射系数(s A )之间的关系,以便用比较法估算目标强度(TS)。C. hysoscella(平均伞直径 26.8 cm)的 TS 在 18 kHz 时为 -51.5 dB,在 38 kHz 时为 -46.6 dB,在 120 kHz 时为 -50.1 dB;A. aequorea(平均中央伞直径 7.4 cm)的 TS 在 18 kHz 时为 -68.1 dB,在 38 kHz 时为 -66.3 dB,在 120 kHz 时为 -68.5 dB。这些 TS 值与之前公布的相关物种估计值相比更为有利。水母的捕获密度很高(每 100 立方米最多 3 只 C. hysoscella,每 100 立方米最多 168 只 A. aequorea)。如此高的密度,加上用于渔业调查的频率下不小的 TS,意味着水母可能会影响鱼类丰度的声学估计。我们建议使用一种简单的多频方法来区分水母的回声和本格拉北部生态系统中一些具有商业价值的远洋鱼类。