摘要 在各种潜在的安全关键场景中,对机器人进行有效的人工监督是确保机器人正确运行的关键。本文通过结合两种人体生物信号流(分别通过 EMG 和 EEG 获得的肌肉和大脑活动),朝着快速可靠的人工干预监督控制任务迈出了一步。它介绍了使用肌肉信号对左手和右手手势进行连续分类、使用脑信号(在观察到错误时无意识产生)对错误相关电位进行时间锁定分类,以及结合这些管道在多项选择任务中检测和纠正机器人错误的框架。以“即插即用”的方式评估由此产生的混合系统,其中 7 名未经训练的受试者监督执行目标选择任务的自主机器人。离线分析进一步探索了 EMG 分类性能,并研究了选择可能促进可推广的即插即用分类器的训练数据子集的方法。
摘要为了确保机器学习模型可靠并且广泛适用,交叉验证方法至关重要。他们提供了一种有条不紊的方法来调整超参数,评估模型性能以及通过过度拟合,不平衡数据和时间依赖性解决问题。本评论文章对机器学习中使用的许多交叉验证策略进行了详尽的分析,从诸如K折的交叉验证等传统技术到针对特定类型的数据和学习目标的更专业策略。除了当前的发展和交叉验证方法中的最佳实践外,我们还介绍了每种技术的基本原理,用途,利益和弊端。我们还强调了要考虑的重要因素和建议,以根据数据集的特性和建模目标选择合适的交叉验证程序。这项研究的目的是使学者和实践者彻底了解交叉验证方法及其在开发可用的可用文献中开发可靠和可靠的机器学习模型方面的重要性。
● 为公司各个年级提供符合 SCCSC 课程和印第安纳州标准的一致且适当的技术,支持教学传授和学生学习。 ● 利用技术作为课堂内外丰富多媒体协作和交流的载体,提供更多机会 ● 为公司配备并维护连接、硬件、软件、数字资源、教学/学习材料和设施。 ● 促进所有学生平等获得学习技术和技能指导 ● 为所有学生和教职员工树立良好的数字公民榜样 ● 为教职员工提供技术、技术培训和/或数据分析,以有效协调课程、教学和评估。 ● 让学生自主决定为正确的学习目标选择正确的技术工具 ● 积极探索和实施有效利用技术的新兴趋势,发挥其提高学生学习能力的潜力,同时持续进行员工发展 ● 支持技术人员以创新和有目的的方式为学生、教师、管理人员和教职员工使用技术。
在 Fitts 定律实验中,开发了一种混合凝视和脑机接口 (BCI) 来完成目标选择。该方法 GIMIS 使用凝视输入来控制计算机光标以指向目标,并通过 BCI 使用运动意象 (MI) 执行点击以选择目标。一项实验 (n = 15) 比较了三种运动意象选择方法:仅使用左手、使用腿以及使用左手或腿。后一种选择方法(“任一”)具有最高的吞吐量(0.59 bps)、最快的选择时间(2650 毫秒)和 14.6% 的错误率。随着目标宽度的增加,瞳孔大小显著增加。我们建议使用大目标,这显著降低了错误率,并使用“任一”选项进行 BCI 选择,这显著提高了吞吐量。与停留时间选择相比,BCI 选择速度较慢,但如果凝视控制正在恶化,例如在 ALS 疾病的晚期阶段,GIMIS 可能是一种逐步引入 BCI 的方法。
线粒体的结构和功能之间存在密切的相互作用。要理解这种复杂的关系,需要先进的成像技术来捕捉线粒体的动态特性及其对细胞过程的影响。然而,大部分关于线粒体动力学的研究都是在单细胞生物或体外细胞培养中进行的。在这里,我们介绍了一种用于实时成像秀丽隐杆线虫线粒体形态的新型遗传工具,以满足研究活体完整多细胞生物内细胞器动力学的先进技术的迫切需求。通过全面的分析,我们将我们的工具与现有方法直接进行比较,展示它们在可视化线粒体形态方面的优势,并对比它们对生物体生理学的影响。我们揭示了传统技术的局限性,同时展示了我们的方法的实用性和多功能性,包括内源性 CRISPR 标签和异位标记。通过提供根据实验目标选择最合适工具的指南,我们的工作推动了秀丽隐杆线虫的线粒体研究,并增强了不同成像模式的战略整合,以全面了解生物体内的细胞器动力学。
1。简介1.1为什么供应商参与至关重要1.2关于本指南2。为正确的目标选择合适的供应商2.1计算范围3排放2.2确定供应商参与目标是否合适2.3确定供应商以包含在目标3。确保内部买入3.1识别内部利益相关者3.2获得买入4.目标实施4.1团队角色和职责4.2定义供应商期望4.3供应商通信4.4供应商资源4.5选择供应商数据收集解决方案5。启用和跟踪供应商绩效5.1供应商能力建设5.2供应商绩效跟踪5.3供应商激励措施5.4审查供应商基于科学的目标5.5供应商参与计划改进6。监视和报告目标进度6.1跟踪参与目标上的进度6.2供应商列表管理时间7。其他资源气候/温室气体入门资源GHG基于科学的目标范围3排放减少供应商参与词汇表
植物分子农业 (PMF) 是指修改植物的基因组成以获得转基因植物,进而利用转基因植物获得重组蛋白。重组蛋白已引起全球关注。转基因植物可用于生产各种类型的重组治疗剂。植物是合适且可接受的宿主,因为生产成本远低于转基因动物、发酵或生物反应器。通过将所需性质的外来基因整合到合适的植物中,可以生产治疗性蛋白质,例如抗体、细胞因子、酶、激素和可食用疫苗。蛋白质产量巨大,因为可以使用转基因植物在分子农业中生产各种类型的蛋白质,如抗体和许多其他蛋白质。通过分子农业生产的商业材料吸引了巨大的市场。分子农业为全球生产制造负担得起的现代药物提供了机会。在该领域生产的疫苗可预防许多可怕的病毒感染。需要分子农业产品的商业可持续性、适当的目标选择、纯化、生产方法的修改以及先进技术的结合。分光光度法和 CRISPR/Cas9 等新技术已被纳入分子农业领域。PMF
美国编写机构已确认,Volt Typhoon 已破坏了美国大陆和非大陆及其领土(包括关岛)内多个关键基础设施组织的 IT 环境,主要涉及通信、能源、交通系统以及供水和废水系统部门。Volt Typhoon 的目标选择和行为模式与传统的网络间谍或情报收集行动不一致,美国编写机构高度确信,Volt Typhoon 攻击者正在 IT 网络上预先定位自己,以便能够横向移动到 OT 资产以破坏功能。美国编写机构担心,如果发生潜在的地缘政治紧张局势和/或军事冲突,这些攻击者可能会利用其网络访问权限造成破坏性影响。CCCS 评估认为,来自中国国家支持的行为者对加拿大关键基础设施的直接威胁可能低于对美国基础设施的威胁,但如果美国基础设施受到破坏,由于跨境整合,加拿大也可能会受到影响。 ASD 的 ACSC 和 NCSC-NZ 分别评估澳大利亚和新西兰的关键基础设施可能容易受到中国国家支持的行为者的类似活动的攻击。
EELT 仪器 望远镜需要仪器来探测光子并生成数字图像和光谱。正如可以预料的那样,这些仪器也带来了重大的工程挑战。人们正在研究一系列仪器概念来解决科学问题,从探测和了解系外行星,到早期宇宙中星系的成像光谱。这些仪器的光谱范围从 0.35 到 14 μm,光谱分辨率 (λ/Δλ) 从几十到 150,000,视场从 1 角秒到 10 角分。这里展示了英国-法国 EAGLE 概念的一个例子,它展示了技术挑战。该仪器旨在通过同时收集和分析来自 20 个星系的红外光来提高望远镜的效率。机器人目标选择系统用于将拾取镜放置在仪器焦平面上的星系图像上。光束控制镜将这些图像中继到一组成像光谱仪。每个通道都包含一个自适应光学系统,该系统采用一种称为多目标自适应光学的新技术。EAGLE 仪器将使人们能够研究早期宇宙中的星系动态,以帮助了解它们是如何形成的以及它们中恒星形成的速度有多快。
摘要:CRISPR-Cas 系统已发展成为一种尖端技术,通过精确的基因操作改变了生物科学领域。CRISPR/Cas9 核酸酶正在发展成为一种革命性的方法,可以编辑任何物种的任何基因并获得理想的结果。CRISPR-Cas 技术的快速发展反映在不断扩展的生物信息学工具生态系统中,这些工具旨在使 CRISPR/Cas9 实验更容易。为了帮助研究人员设计出有效的向导 RNA 并减少脱靶效应、选择核酸酶靶位和进行实验验证,生物信息学家已经建立并开发了一套全面的工具。在本文中,我们将回顾可用于评估脱靶效应以及量化核酸酶活性和特异性的各种计算工具,包括基于网络的搜索工具和实验方法,并将描述如何优化这些工具以用于模型生物的基因敲除 (KO) 和基因敲入 (KI)。我们还讨论了精准基因组编辑及其应用的未来方向,以及目标选择方面的挑战,特别是在预测脱靶效应方面。