2024年7月25日 — 5项标准及测试项目。见附表。 6 一般事项。(1)需提交的文件。见附表。 合同 ...
我们的旅游业促进了我们城市的经济增长,也促进了社区的福祉。我们希望游客在离开时能更加欣赏堪培拉,感到充实、受教益,并愿意向他人介绍这里提供的优质、多样化体验。我们还希望游客认为我们的城市和地区是一个适合居住、学习、工作和投资的好地方,享有进步、包容和欢迎所有人的美誉。
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
DNA2VEC载体。单词嵌入被广泛用于自然语言处理(NLP),可使用固定长度向量有效地将单词映射到高维空间中[19]。这个概念也已应用于DNA序列[20]。在这项研究中,我们利用了预训练的单词向量来嵌入DNA序列。我们通过窗口大小m(m = 3)和步长s(s = 1)进行长度n的DNA样本,然后获得长度m xi∈{x 1,x 2,x 3,...,x n-2}的N-2 DNA序列。每个X I可以在衍生自DNA2VEC的预训练的DNA载体基质中找到[21]。我们使用ei∈Rk来表达缝隙I序列的k(k = 100)维矢量,然后将我们的序列x i转换为e ei∈{e 1,e 2,e 3,...,e n-2}。最后,对于每个长度n的样本,它可以嵌入为:e 1:n -2 = e1⊕e2 e 2 e 2⊕e n -2(1),其中⊕表示串联算子。
摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
a 京都大学土木与地球资源工程系,京都西行区桂城 615-8530,日本 b 隧道工程研究小组,东京千代田区梶町 101-0044,日本
摘要 - 全球物联网(IoT)的采用取决于传感器节点的大规模部署和及时的数据收集。但是,在远程或无法访问的区域中安装所需的地面基础设施在经济上是没有吸引力或不可行的。成本效益的纳米卫星部署在低地球轨道(LEO)中是一种替代用解决方案:板载物联网网关可访问对远程物联网设备的访问,这是根据直接到卫星IoT(DTS-IOT)体系结构的访问。DTS-iot的主要挑战之一是设计通信协议,以通过同样受约束的轨道网关提供的数千种高度约束设备。在本文中,我们通过首先估计(移动)纳米卫星足迹下方设置的设备的(不同)尺寸来解决此问题。然后,我们证明了用于智能油门DTS-iot访问协议时估计的适用性。由于最近的工作表明,当网络尺寸估计可用时,MAC协议提高了DTS-IOT网络的吞吐量和能源效率,因此我们在此提出了DTS- IOT中的新颖且计算高效的网络尺寸估计器:基于乐观的碰撞信息(OCI)的估计器。我们通过广泛的DTS-iot场景模拟来评估OCI的有效性。结果表明,当使用网络尺寸估计时,基于Aloha的DTS- IOT网络的可伸缩性将增强8倍,最多可提供4×10 3设备,而无需罚款。我们还显示了OCI机制的有效性,并证明了其低计算成本实施,使其成为DTS-IOT网络估计的有力候选者。
4.1. 该计划可以概述各种现有综合建筑的电气化途径,包括文化机构、政府部门、国防设施、教育设施(包括各大学)、体育设施(如澳大利亚体育学院)和公寓楼。 4.2. 该计划可以通过考虑具有独特挑战的综合建筑来增强,例如研究建筑和医疗设施,它们使用化石燃料气体产生蒸汽进行消毒和加湿。 4.3. 为了为综合商业建筑或区域的脱气提供模型并与行业和其他组织分享经验,澳大利亚首都领地政府可以通过为在北领地试点实施集中式热中心提供支持,创建示范点,帮助克服先行者障碍。
将电子自旋纳入电子设备是旋转的核心思想。[1]这个不断增长的研究领域最终旨在在Terahertz(THZ)速率上产生,控制和检测自旋电流。[2]要实现这种高速自旋操作,旋转轨道相互作用(SOI),尽管很弱,但它起着关键作用,因为它将电子的运动与旋转状态相结合。[3]从经典的角度来看,SOI可以理解为旋转依赖性的有效磁场,该磁场会在相反的方向上偏转转移旋转和旋转传导电子(见图1 A)。SOI的重要后果是旋转厅效应(SHA)[4]及其磁反部分,即异常效果(AHE)。[5,6]在带有SOI的金属中,她将电荷电流转换为横向纯自旋