神经科学的一个重要目标是确定不同大脑区域代表哪些类型的信息。在研究大脑表征的一种策略中,研究人员首先记录大脑对不同刺激的反应。然后使用统计方法来评估刺激和大脑反应之间关系的强度。然后使用这些统计评估结果推断感兴趣区域中编码的表征空间。认知神经科学家可以使用许多统计技术。它们包括统计参数映射方法 [12]、多元模式分析 (MVPA) 技术 [4] 和编码模型 [16]。一种常见的 MVPA 分析类型是表征相似性分析 (RSA;[10])。RSA 之所以被广泛采用,部分原因是它计算简单。然而,迄今为止很少有研究探索 RSA 的有效性。 10 在本文中,我们使用模拟数据和真实数据来评估 RSA 作为模型评估和模型选择方法的有效性,更广泛地说,作为计算神经科学的工具。模型评估是指在刺激和反应之间存在显著关系时,检测刺激和反应之间显著关系的能力。
准确地测量多样性对于许多科学领域,包括机器学习(ML),生态学和化学。vendi评分是作为基于一般相似性的多样性度量的引入的,该度量通过利用Quantum统计力学的思想来扩展Q = 1的山丘数量。与生态学中的许多二维化指标相反,vendi得分的相似性得分,并且不需要对集合中该类别的普遍性的了解来评估多样性。但是,Vendi分数在给定的集合中以与项目的患病率成正比的敏感性对待每个项目。这是在项目患病率存在重大失衡的设置中是不可取的。在本文中,我们使用相似性扩展了其他山丘,以在分配对稀有物品或常见项目的敏感性方面具有灵活性。这导致了一个多样性指标的家族 - Q的vendi得分与Q顺序不同的敏感性,可用于多种应用。我们在合成控制的环境中研究得分的特性,在该环境中,地面真实多样性是已知的。然后,我们通过vendi采样来测试VENDI评分在改善分子模拟中的效用。最后,我们使用分数来更好地了解记忆,重复,多样性和样本质量的生成模型的行为。
摘要 - 对于自动地面车辆,带有3D激光雷达的全球定位是导航等任务中必不可少的一部分。通常,使用LIDAR的全球定位细分为两个子问题,即位置识别和全球注册。为了获得位置识别,基于深度学习的最新新兴方案要么依赖于具有高复杂性的3D卷积,要么需要从各种前瞻性角度学习特征。为此,我们提出了一个具有滚动式yaw不变性的模型,该模型代表点云为概率的体素,并从鸟眼的视图中产生占用网格,从而通过从固定的角度学习聚集的嵌入来实现稳健的位置识别。对于低重叠的全球注册,基于传统的手工艺特征的方法主要限于密集的对象级别云,而基于最新的学习方法通常依赖于复杂的3D卷积和其他功能关联学习。为了在一定程度上填补这一空白,我们建议通过拟合和对齐点云的接地平面来估计相对滚动角度和垂直翻译,并通过匹配其预计的占用率网格来确定水平翻译和偏航角。广泛的实验证实了我们位置识别模型的出色召回和概括能力,以及我们3D注册方法的高级成功率和准确性。尤其是在认识和注册硬样品时,我们的结果远远超过了我们的结果。为了确保完整的可重复性,相关代码和数据可在https://cslinzhang.github.io/gloc/gloc/gloc.html上在线提供。
聊天机器人的最新进展为学生和学者提供了一种新的知识来源和组成方式。在很短的时间内,学生和学者蜂拥而至,用于使用Chatgpt和其他生成人工智能(GAI)平台,原因是他们的反应能力。此外,除了生成的聊天机器人(例如Chatgpt和Gemini)之外,AI编写工具用于释义,总结和共同写作也已经变得有能力且越来越普遍,因此公众被宠坏了。在对流行的聊天机器人和AI写作工具进行了测试后,很明显,尽管Turnitin之类的程序正在开发新算法来检测窃和AI-AI-ATECTENT内容,但本研究的初步发现表明,这可能是一项越来越困难的任务。这些测试已在YouTube上发表,几周后,随着学生和教育工作者似乎对这些AI工具的优势,劣势和合法性似乎不确定,证据就获得了数以万计的观点。清楚的是,我们已经通过了临界点,而AI的帮助不再只是语法修复器。这对此的影响是关于窃的,因为窃已经是大学的重要问题。该职位论文报告使用Turnitin软件和AI写作工具(例如Chatgpt和Quillbot)进行的测试。这些现实世界的测试支持该论文的立场,即确定在GAI世界中构成原创作品的越来越困难。所提出的方法侧重于工作的“理解”,而不是文本相似性。本文的目的是提供证据表明,依靠相似性检查和当前形式的AI探测器的教育者可能会无意间支持窃而不是减少窃。提出了一种新的学术窃方法检测方法,利用大型语言模型来生成和跟踪思想,从而充当一个想法数据库。
摘要 - 强调对深层生成模型的调节,这是由于与隐私和遵守监管框架有关的关注所升级,强调了对这些模型的精确控制机制的必要需求。这种紧迫性尤其强调,在这种情况下,生成模型产生的输出涵盖了可观的,令人反感的,令人反感的或可能有害的内容。在响应中,已经出现了机器,以选择性地忘记特定的知识或从预训练的模型中删除不良数据子集的影响。但是,现代机器未学习方法通常会在学习过程中访问模型参数和架构细节,这并不总是可行的。在多种下游任务中,这些模型充当黑框系统,具有无法访问的预训练参数,体系结构和训练数据。在这种情况下,过滤不需要的输出的可能性成为一种实用的选择。我们提出的方法功能特征意识相似性阈值(快速)通过系统地编码潜在空间中不需要的特征来有效地抑制不希望的输出。我们采用用户标记的正和负样本来指导此过程,利用潜在空间固有的能力来捕获这些不受欢迎的表示形式。在推断期间,我们使用潜在空间中的此确定的表示形式来计算带有新采样的潜在向量的投影相似性指标。随后,我们精心应用一个阈值以从输出中排除不可用的样品。我们的实施可从https://github.com/subhodip123/weak-unlearning-gan-gan
1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J. Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J.Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡
图 1 社交互动 fMRI 任务示意图 (a)。参与者会得到半秒钟的提示,表明他们是要回答互动伙伴 (peer) 提出的问题,还是回答计算机提出的关于故事人物 (character) 的问题。提示持续 3.5 秒,需要使用关于目标的心理状态信息 (mental),或非心理、物理信息 (nonmental)。这产生了一个完全的受试者内、2 (同伴/角色) 2 (心理/非心理) 设计 (b)。PM,同伴心理;PNM,同伴非心理;CM,角色心理,CNM,角色非心理。模型 1 = 互动涉及心理化 (c),模型 2 = 互动模型 (d),模型 3 = 心理化模型 (e)
摘要:相似的药物分子通常具有相似的特性和活性。因此,量化分子相似性对于药物发现和优化至关重要。在这里,我回顾了我所在跨学科网络 NCCR TransCure 内开发的使用分子相似性测量的计算方法,该网络研究离子通道和膜转运蛋白的生理学、结构生物学和药理学。我们设计了一种 3D 分子形状和药效团比较算法,通过骨架跳跃优化弱和非选择性抑制剂,并发现了离子通道 TRPV6 和 TRPM4、内源性大麻素膜转运以及二价金属转运蛋白 DMT1 和 ZIP8 的强效和选择性抑制剂。我们通过将不同分子指纹的分子相似性搜索与 ChEMBL 数据库中的靶标注释化合物相结合来预测脱靶效应。最后,我们创建了反映分子相似性的交互式化学空间图,以方便筛选化合物的选择和筛选结果的分析。这些不同的工具可在线获取,网址为 https://gdb.unibe.ch/tools/。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月18日。; https://doi.org/10.1101/2022.05.05.05.02.490309 doi:biorxiv Preprint
摘要:相似的药物分子通常具有相似的特性和活性。因此,量化分子相似性对于药物发现和优化至关重要。在这里,我回顾了我所在跨学科网络 NCCR TransCure 内开发的使用分子相似性测量的计算方法,该网络研究离子通道和膜转运蛋白的生理学、结构生物学和药理学。我们设计了一种 3D 分子形状和药效团比较算法,通过骨架跳跃优化弱和非选择性抑制剂,并发现了离子通道 TRPV6 和 TRPM4、内源性大麻素膜转运以及二价金属转运蛋白 DMT1 和 ZIP8 的强效和选择性抑制剂。我们通过将不同分子指纹的分子相似性搜索与 ChEMBL 数据库中的靶标注释化合物相结合来预测脱靶效应。最后,我们创建了反映分子相似性的交互式化学空间图,以方便筛选化合物的选择和筛选结果的分析。这些不同的工具可在线获取,网址为 https://gdb.unibe.ch/tools/。