双重散射引起的电子极化 Matt' 给出了双重散射引起的电子极化的一般理论,但对纯库仑型散射场在 90° 处第二次散射后方位角分布中预期百分比不对称性的详细计算却只进行了一次。鉴于迄今为止的实验尚未揭示出在预期出现明显百分比效应的条件下(79 kv 电子被金散射)没有出现明显的不对称性2 ,因此,对其他类型散射场的预期效应进行详细分析就显得十分重要。我们研究了金、氙和氪原子场(即屏蔽库仑场)散射引起的极化效应,研究了很宽的电子能量范围(100 ev.-150,000 ev)。所涉及的微分方程在许多情况下通过精确数值积分求解,在其他情况下则使用“杰弗里斯近似”,后者的有效性已得到首次证实。据发现,在莫特计算的金核未屏蔽场的能量范围内,引入屏蔽没有重要影响,无法获得预测的不对称性的原因仍未得到解释。屏蔽的一个有趣效应是,在金散射中,低能量(几百电子伏的数量级)的小能量范围内存在大极化。虽然理论无法准确确定这些效应发生的精确能量范围,但可以通过以下方式证明它们的存在。百分比不对称性涉及不对称因子与与 90° 处单次散射强度成比例的项的比率。与未屏蔽的库仑场不同,在屏蔽的库仑场中,后者项随电子能量以不规则的方式变化,最高可达数千电子伏特的能量。特别是,对于某些狭窄的电子能量范围,它会降至非常低的值,正如 Arnot 对汞蒸气中电子散射的实验所揭示的那样。另一方面,不对称因子变化并不那么明显。它主要由 p 和 pi 电子的波函数之间的无穷远处相位差 Xt 决定。我们发现,对于金,在 250 ev.-100,000 ev 的能量范围内,该相位差保持在 0.24 到 0.34 弧度之间。因此,在 90° 处单次散射最小值的能量下,百分比不对称性测量值可能相当大。由于它与低强度的总散射有关,因此很难通过实验检测到这一点,尽管使用所涉及的低能电子有优势。计算表明,对于氙和氪,Xt 的值不足以在任何能量下产生明显的极化。
处理光子结构的辐射不对称尤其令人感兴趣,例如定向光天线,高效率片上激光器和相干的光控制。在这里,我们提出了一个伪极化的项,以揭示双层属性中辐射不对称的拓扑性质。具有整数拓扑电荷的稳健伪极化涡流存在于P -Symmetry Metagration中,允许合成参数空间中的可调方向性范围从-1到1。当p-对称性破裂时,由于电荷的保护定律,这种涡旋变成了C点的成对,从而导致辐射不对称的相位差异从π= 2到3π= 2。此外,在两个反向传播的外部光源之间的遗嘱中,拓扑启用的连贯的完美吸收在旨意的自定义相位差都是可靠的。这封信不仅可以丰富对两种特定的拓扑光子行为的理解,即连续和单向引导的共鸣,而且还提供了有关辐射不对称的拓扑视图,为在固定的夹具激光,光线灯光,光线灯光开关和量子上且量子上的不对称光操作打开了未开发的途径。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
三角形PTBI 2是一个没有反转对称性的分层半学,在费米能的附近具有12个Weyl点。最近显示其拓扑费米弧在不存在大量超导性的低温下显示出超导。在这里,我们执行第一个原理计算,以详细研究PTBI 2的整体和表面电子结构,并获得自旋纹理以及弧的动量依赖性定位。是由在压力下或掺杂下实验观察到的反转对称性的恢复的动机,我们在两个结构之间插入,并确定Weyl节点的能量和动量依赖性。为了深入了解PTBI 2的表面超导性,我们构建了对称性适应的有效四波段模型,该模型可以准确地重现PTBI 2的Weyl点。我们通过对费米弧线之间的对称允许配对进行分析,该模型自然混合了旋转单链和旋转三键通道。此外,仅表面超导的存在促进了固有的超导体 - 隔离 - 占主导地位约瑟夫森连接,而半金属相夹在两个超导体表面之间。对于π的相位差,零能量的Andreev结合状态在两个终止之间形成。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
提出了图中所示的方案1 a。传入的光子通过偏光束分离器(PBS),因此只能从单面腔中反射V极化,该腔与#J I $#0 J I Transition伴侣。H极化反映在镜像上,并与V极化重新组合以形成绑带旋转状态:ψENT;超出¼αH; #jiÞβv; #JIαH; “ jiβv;” j i。随后对光子状态的测量预示着极化量子值向原子的转移,如最近使用捕获的中性原子4和钻石颜色中心5的实验中所证明的那样。然而,在自由空间设置中,一个重大的技术挑战涉及需要保持两个空间分离的长度极化路径之间相位差的稳定性4。在本文中,我们提出了一个整体,微米级的光子结构,将H和V路径结合到一个相稳定的结构中(图1 b)。我们估计,该系统将使国家转移限制超过99%。这个极化编码的光子到旋转界面(PEPSI)极大地简化了量子网络,并具有偏振编码的光子与原子记忆结合。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术能够在高度方向上实现真正的几何分辨能力,并为许多应用和反演问题引入了新的可能性。即使是因重叠和缩短效应导致的 SAR 图像中的误解也可以通过断层扫描处理解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了有限飞行轨迹数量带来的限制。我们提出了一种方法,用于减少与成像位置不规则和欠采样空间分布相关的高度模糊性。最后,我们解决了极化机载 SAR 断层扫描的实验要求,并使用德国奥伯法芬霍芬附近试验场的 DLR 实验 SAR(E-SAR)在 L 波段获取的多基线数据集展示了实验结果。
被捕获的离子可以通过用激光激发其内部电子态形成有效的量子二能级系统,从而充当有前途的可扩展量子比特,而离子在谐波势阱中的量化运动状态使我们能够通过库仑力与相邻离子相互作用。因此,高保真操作需要精确了解系统的运动退相干时间,即离子的运动状态不再可靠地被知道或不再能被控制的时间。现有的运动相干性测量通过将运动状态与激光驱动的内部跃迁耦合来间接控制和测量运动状态,因此,它们可能容易出现电子状态退相干和激光幅度或频率波动。在本论文中,我们应用了之前提出的直接电场操纵被捕获离子运动相干态的机制,在一种新的自由进动序列中测量运动相干时间。该序列由连续谐振子相空间中两个相位差可变的相干位移组成,由可变的延迟时间分隔。在 4 开尔文的超高真空室中,使用位于铌表面电极阱上方 50 微米处的锶-88 + 离子,我们测量了 (24 ± 5) 𝑠 − 1 的运动退相干率。该测量速率与系统的预期退相干率相匹配,其中捕获离子加热在幅度上超过其他形式的退相干,这很可能是我们系统的情况。