量子密钥分布(QKD)是通信技术的新方向。QKD建立了两个当事方(通常称为Alice和Bob)之间的安全连接,其中量子力学定律提供了有目的的通道的可靠性,其中最重要的是无关定理[1]。从长远来看,QKD基于计算数学函数的复杂性,QKD比常见的密码系统提供了更安全的连接。第一个提出的方案是BB84 [2],其中秘密键是通过使用两个正交光子极化碱基来生成的。从那时起,研究了许多方案和实验方案以改善QKD系统的参数并扩大其应用的可能性[3]。尤其是,自由空间QKD由于其灵活性和移动性而积极开发,可用于移动设备[4],卫星通信[5]和物联网(IoT)[6]。与光纤纤维相比,自由空间QKD尚未在商业系统中广泛使用。这些系统的主要局限性是高斯光束偏离由大气湍流和天气条件引起的原始传播方向的偏差。为解决此问题,目前使用了具有较大入口或特殊校正系统的伸缩系统,这增加了QKD系统的复杂性,重量和成本。作为梁偏差补偿的另一种方法,可以使用光涡旋,根据许多研究[7,8],在湍流气氛中更稳定。这些问题将在本文中探讨。光涡流或具有轨道角动量(OAM)的光辐射在其中心具有空间奇异性,相位保持不确定,并且沿着梁的内边缘从0到2π不等[9]。这些过渡的数量对应于涡旋的拓扑电荷。目前,已经在QKD系统中研究了涡流束,特别是作为编码信息的基础[10]和相对于轨道动量的通道[11]。但是,在自由空间QKD中具有湍流气氛的高斯和涡流梁的传播及其对此类系统参数的影响之间没有比较。此外,没有对相位调节保存进行的实验研究,并对涡流束进行了额外的调节和解调,这对于将大气通道与光学纤维有效整合是必不可少的。