摘要 3D 打印或基于材料挤压的增材制造已从一种有前途的制造技术发展成为一种成熟的方法,可以集成到众多应用中。然而,这种技术涉及大量变量,这些变量会显著影响最终结构。此外,这种依赖性阻碍了数值模型的开发,无法估算具有不同打印配置的 3D 打印组件的机械行为。因此,提出了相场方法,通过相对简单的能量平衡最小化问题来预测裂纹扩展。然而,这种计算方法需要确定特定的参数。因此,提出了一种基于拉伸试验的实验方法来机械地表征材料,并从实验结果中分析定义必要的断裂参数,包括强度和临界能量释放率。在不同配置下研究了使用可持续热塑性塑料通过材料挤压制造的无缺口和有缺口样品,以分析断裂机制,同时提出减少打印缺陷的策略。此外,还开发了一种基于相场断裂建模的开源数值预测工具,以及对基本长度尺度参数的评估。实验和数值研究的结合验证了所提出的方法,并证明了其易于在进一步的案例研究中重现。
本文报道了通过相场模拟解决材料科学悬而未决的问题的最新突破。它们涉及增材制造中的凝固结构形成、贝氏体转变过程中的碳重新分布以及高温合金高温蠕变过程中的损伤开始。第一个例子涉及凝固过程中外延生长和成核之间的平衡。第二个例子涉及贝氏体转变中扩散控制和块状转变占主导地位的争议。第三个例子涉及高温合金中的定向粗化(筏化),这是一种扩散控制的相变:沉淀物相干性的丧失标志着与晶格旋转和拓扑反转相关的损伤的开始。本文根据需要回顾了相场法的技术细节,并讨论了该方法的局限性。
在本文中,我们研究了 3D 打印聚合物复合材料在经历大变形时的失效行为。将实验结果与使用具有能量阈值和有效平面应力公式的相场断裂法的数值模拟进行了比较。将开发的框架应用于由嵌入软基质中的三个刚性圆形夹杂物组成的复合系统。特别是,我们研究了几何参数(例如夹杂物之间的距离和初始缺口的长度)如何影响软复合材料的失效模式。我们观察到复杂的失效序列,包括块体材料中的裂纹停止和二次裂纹萌生。值得注意的是,我们的数值模拟捕捉到了复合材料失效行为的这些基本特征,数值结果与实验结果高度一致。我们发现复合材料的性能(强度和韧性)可以通过选择夹杂物的位置来调整。然而,我们报告称,最佳夹杂物间距并不是唯一的,还取决于初始缺口长度。这些发现为设计性能增强的软复合材料提供了有用的见解。