我们不需要知道它是如何工作的,只需要看看我们的 GPS - 虽然你可能经历过偏远地区 GPS 失灵的情况。全球定位系统 (GPS) 是一个由卫星和接收设备组成的网络,用来确定地球上某物的位置,例如你的手机。今天的 GPS 接收器非常精确,它们可以将其位置 (纬度、经度和高度) 精确到厘米。它于 1973 年发明,最初仅供美国军方使用。GPS 设备记录它从每颗卫星接收到这些信息的准确时间,然后评估每个信号到达所需的时间。初步估计,通过将经过的时间乘以光速,它可以计算出它与每颗卫星的距离,比较这些距离并计算出它自己的位置。
1 上海纽约大学,上海浦东世纪大道 1555 号,邮编 200122,中国 2 尼日利亚联邦理工大学物理科学学院物理系,邮编 PMB 1526,邮编 Owerri 460001,尼日利亚 3 哈萨克斯坦纳扎尔巴耶夫大学物理系,邮编 53 Kabanbay Batyr Ave.,阿斯塔纳 0100006 4 麻省理工学院物理系,邮编 02139,美国 5 麦考瑞大学物理与天文系,邮编 2109,新南威尔士州,悉尼 6 国家信息与通信技术研究所,邮编 184-8795,日本 7 印度钦奈麦拉波罗摩克里希纳教会维韦卡南达学院物理系,邮编 600004 8 路易斯安那州立大学物理与天文系赫恩理论物理研究所,路易斯安那州巴吞鲁日70803,美国 9 中国科学技术大学中科院-阿里巴巴量子计算实验室,上海 201315,中国 10 上海纽约大学-华东师范大学物理研究所,上海市中山北路 3663 号,200062,中国 11 日本东京都小金井市贯井北町 4-2-1 信息通信技术研究所,184-8795,日本 12 华东师范大学物理与材料科学学院,精密光谱国家重点实验室,上海 200062,中国 13 日本东京都千代田区一桥 2-1-2 信息学研究所,101-8430,日本 14 纽约大学物理系,纽约州纽约市 10003,美国(日期:2019 年 11 月 6 日)
安全密钥生成的量子协议的设计面临许多挑战:一方面,它们需要在实验实现方面具有实用性。另一方面,它们的理论描述必须足够简单,以便对所有可能的攻击进行安全证明。这两个要求通常相互冲突,差分相移 (DPS) QKD 协议体现了这些困难:它被设计为可利用当前的光通信技术实现,而对于该协议,其代价是许多标准安全证明技术不适用于它。在发明约 20 年后,这项工作首次提出了 DPS QKD 针对一般攻击(包括有限尺寸效应)的完整安全证明。该证明结合了量子信息论、量子光学和相对论技术。我们首先给出 QKD 协议的安全性证明,该协议的安全性源于相对论约束。然后我们表明 DPS QKD 的安全性可以归结为相对论协议的安全性。此外,我们还表明,对 DPS 协议的连贯攻击实际上比集体攻击更强。我们的研究结果对安全可靠的量子通信技术的发展具有广泛的意义,因为它们揭示了最先进的安全证明技术的适用范围。
理事会2025年1月,美洲伊万·阿古罗(Ivan Agullo)(路易斯安那州立大学)Miles Blencowe(Dartmouth)Doreen Fraser(滑铁卢大学)EduardoMartín-Martínez(滑铁卢)亚洲 - 太平洋大学Nicholas Funai(RMIT Melbourne)Kinjalk lochan(ierband)是Anastopoulos(Patras of Patras)Fabio Costa(诺迪塔,斯德哥尔摩大学,KTH皇家技术研究所)Flavia Giacomini(EthZürich)RalfSchützhold(Helmholtz-Zentrum dresden Rossendorf) E(美国),EduardoMartín-Martínez(加拿大)2023-2024:Flaminia Giacomini(加拿大)2019-2024:Achim Kempf(加拿大)2016-2020:MartínMartínigniz(MartínMartínez(加拿大)(加拿大(加拿大)2011-2016:Juan Pablo Paz(阿根廷)2011- 2011年 - 亚洲福柯(加拿大) - 太平洋2025-ongoing:Nicholas Funai(澳大利亚),Kinjalk Lochan(印度)澳大利亚)(2016)2022:戴维·阿恩(韩国),尼克·梅尼科奇(澳大利亚)2014-2017:Masahiro Hotta(日本),Choo-hiap OH(新加坡),马特·维瑟(新西兰),2011- 2016年,2011- 2016年:Shih-Yuin Lin(Taiwan),Timothy Ralph(Timothy Ralph)(澳大利亚),Daniel Triel TRIER TRIEN LIANE,2013年13年,
版权所有©1975年,普林斯顿大学出版社(Princeton University Press)由普林斯顿大学出版社(Princeton University Press),新泽西州普林斯顿(Princeton)在英国的新泽西州,普林斯顿大学出版社(Princeton University Press),奇切斯特(Chichester),西萨塞克斯郡奇切斯特(Chichester)
用于安全密钥生成的量子协议的设计面临许多挑战:一方面,它们需要在实验实现方面实用。另一方面,它们的理论描述必须足够简单,以便能够针对所有可能的攻击进行安全性证明。通常,这两个要求是相互冲突的,而差分相移 (DPS) QKD 协议就是一个很好的例子:它被设计为可通过当前的光通信技术实现,而对于该协议,代价是许多标准安全性证明技术不适用于它。在这项工作中,我们首次给出了 DPS QKD 针对一般攻击(包括有限尺寸效应)的完整安全性证明。该证明结合了量子信息论、量子光学和相对论技术。我们首先给出一个 QKD 协议的安全性证明,其安全性源于相对论约束。然后我们表明 DPS QKD 可以被表述为相对论协议的一个实例。此外,我们表明,对 DPS 协议的一致攻击实际上比集体攻击更强。
重离子碰撞物理学的主要目标之一是探索奇异物质态的性质,即热、致密且难相互作用的重子物质。它可以在实验室中通过相对论能量下的重核碰撞来重现。格点量子色动力学 (QCD) 计算表明,在高能和低重子密度下,夸克胶子等离子体 (QGP) 到强子气体的转变是平稳的 [1]。人们普遍认为,最终以三临界点结束的一级相变发生在 √ s = 3 至 10 GeV 之间的能量范围内,例如,参见 [2] 及其参考文献。各种过去和正在进行的实验,如相对论重离子对撞机 (RHIC) 上的束流能量扫描 (BES) 和 BES II [ 3 , 4 ]、欧洲核子研究中心的超级质子同步加速器 (SPS) 上的实验,都在探索与金和铅离子束的碰撞,以发现上述能量范围内的任何特殊性。然而,到目前为止,还没有观察到一级相变和三临界点。未来的实验,如基于核子加速器的离子对撞机设施 (NICA) 和反质子和离子研究设施 (FAIR) 旨在以更高的亮度在给定能量下进行碰撞,这让我们有希望在那里看到一些新的东西。观察相变的困难源于许多因素。其中一些是QGP相存在时间极短(大约10 − 24 fm/ c),系统中粒子数少,物质在坐标和动量空间中都具有高度各向异性等。探测器记录的所有有价值的信息大约是数千个具有相应能量和动量的粒子。因此,很难对它们来自的介质做出任何合理的假设。
Meihua Fang 1 , Zheng liang 1 , Yingkui Gong 2* , Jianfei Chen 1 , Guiping Zhu 1 ,Ting Liu 2 , Yu tian 2 , Yu Zhou 2