南加州大学是一个学习社区,致力于培养成功的学者和研究人员,致力于追求知识和思想的传播。学术不当行为与大学的使命形成鲜明对比,该使命是通过一系列的一系列学术,专业和课外课程对学生进行教育,并在提交学术工作(以草稿或最终形式)的提交中包括任何不诚实行为。本课程将遵循USC学生手册中所述的学术完整性的期望。所有学生都应在本学期中提交原始工作并专门为课程/部分准备的作业。您不得提交其他人写的工作或为其他课程准备的“回收”工作,而无需获得教师的书面许可。涉嫌从事学术不当行为的学生将报告给学术诚信办公室。其他违反学术不当行为的行为包括但不限于作弊,窃,捏造(例如,伪造数据),有明智地帮助其他人实现学术不诚实行为,以及任何旨在获得不公平学术优势的行为。
随着人工智能(AI)社会应用的推进,人们正在探索将人工智能应用于艺术和设计等创意领域。尤其是,许多研究和作品示例已经表明,人工智能可以通过使用生成对抗网络(GAN)和其他生成模型来生成“逼真”的图像和音乐,就好像它们是人类创造的一样。另一方面,有人可能会认为生成模型所做的只是从训练数据中学习到的统计模式的再现,并质疑它们作为表达的新颖性和独创性。在本文中,我们研究了人工智能和创造力的现状,并提出了一种通过扩展 GAN 框架来创造新颖表达,尤其是音乐表达的方法。通过这些,我们考虑了人工智能将在未来为创造不仅仅是模仿人类创作的表达做出贡献。
[1] Sato, Y.、Henley, EJ、Inoue, K.:“机器人危险控制系统设计的动作链模型”,IEEE Trans. on Reliability,第 39 卷,第 2 期,(1990 年 6 月)。[2] Kawashima, O.、Sato, Y.(2015 年):”
1 本文的论证也不需要因果集程序中的动态假设。因为我们的主题是恢复整个 4 维时空,所以我们可以将每个因果集视为一个整体,而不管它可能如何动态形成。但我们注意到,事实上因果集程序:(i) 对因果集具有经典动力学,具有许多优点 (Rideout and Sorkin 2000) ;以及 (ii) 至于量子动力学,支持路径积分方法,尽管尚未找到完全令人满意的动力学。本文的较长版本 (Butterfield and Dowker 2021) 讨论了 (i) 和 (ii) 的某些方面。
摘要 本文介绍了(相对论)拉格朗日-汉密尔顿力学系统几何流的经典和量子信息理论。描述了 G. Perelman 熵泛函的正则非完整变形和经典力学系统的几何流演化方程的基本几何和物理性质。研究了此类 F 和 W 泛函在 Lorentz 时空流形和三维类空超曲面上的投影。这些泛函用于阐述拉格朗日-汉密尔顿几何演化的相对论热力学模型以及各自的广义汉密尔顿几何流和非完整 Ricci 流方程。非完整 W 熵的概念是作为经典香农熵和量子冯诺依曼熵的补充而开发的。考虑了基于经典和量子相对熵、条件熵、互信息和相关热力学模型的方法的几何流泛化。利用密度矩阵的形式和量子通道的测量来阐述量子力学系统演化的量子几何流信息理论的这些基本成分和主题。
从技术上讲,量子场论是量子力学在场的动态系统中的应用,与基本量子力学非常相似,它涉及粒子动态系统的量化。因此,虽然量子力学处理的是具有有限自由度的机械系统,但量子场论描述的是具有无限自由度的量子系统。具体来说,本课程致力于相对论量子场论。相对论量子场论解释了粒子的存在并描述了它们之间的相互作用。因此,自然界最基本的层面是由粒子组成的这一事实可以仅仅看作是相对论量子场论的结果。后者在现代物理学中的应用领域非常广泛:从研究高能加速器中基本粒子之间的碰撞到早期宇宙的宇宙学。例如,后来产生星系等结构的原始密度涨落、暗物质的起源或黑洞辐射都是由相对论量子场论描述的。然而,量子场论也可应用于非相对论系统,特别是凝聚态物理学:超流体、超导性、量子霍尔效应……
为任何软件工具,固件或类似的辅助手段提供非歧视性访问,以确保备用电池的全部功能以及在更换期间和之后安装的设备的全部功能; 在制造商,进口商或授权代表的免费访问网站上提供有关设备所有者通知和授权替换电池电池的通知和授权的程序的描述;该程序应允许远程提供通知和授权; 在提供对软件工具,固件或类似辅助手段的访问权限之前,制造商,进口商或授权代表只需收到设备所有者的通知和授权即可。也可以通过所有者的明确书面同意书来提供此类通知和授权; 制造商,进口商或授权代表应在收到请求后的3个工作日内提供对软件工具,固件或类似辅助手段的访问权限,并在适用的情况下进行通知和授权。