获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:近年来,基于深度学习的方法已被应用于合成孔径雷达(SAR)图像的目标检测。然而,由于SAR的成像机制和低信杂噪比(SCNR),利用SAR图像进行飞机检测仍然是一项具有挑战性的任务。针对这一问题,提出了一种基于相干散射增强和融合注意机制的低SCNR SAR图像飞机检测新方法。考虑到人造目标与自然背景之间的散射特性差异,引入相干散射增强技术来增强飞机散射信息并抑制杂波和斑点噪声。这有利于深度神经网络后续提取有关飞机的准确和有判别力的语义信息的能力。此外,开发了一种改进的Faster R-CNN,该网络具有一种融合局部和上下文注意的新型金字塔网络。局部注意通过增强重要对象的可区分特征来自适应地突出显示重要对象,而上下文注意则有助于网络提取图像的不同上下文信息。融合局部注意力和上下文注意力可以保证飞机被尽可能完整地检测到。在TerraSAR-X SAR数据集上进行了广泛的实验以与基准进行比较。实验结果表明,所提出的飞机检测方法在低SCNR下可以达到高达91.7%的平均精度,显示出有效性和优于许多基准。