QC和资源约束:词中间尺度量子(NISQ)一词被创造为参考当今的QC实现,这些实现在能力方面很快,但仍然受到严重的资源约束。1在堆栈的一端,Quantu-Hardware继续扩展到越来越多的物理量子位,但是成功可执行程序的深度(即操作计数)仍然受量子相干时间和高操作误差率的限制。同样,当前的硬件通常仅显示一个小社区内的Qubits之间的通信非常有限,因为所需的交换操作由昂贵且容易出错的纠缠大门主导。尽管有这些挑战,但如果编译器为
量子退相干是维持长时间量子计算的主要障碍。大规模量子计算机(如果建成)很可能面临短暂的退相干时间,因此必须快速行动才能进行有用的计算。这种计算的一个合理理论模型是浅量子电路,即深度较小的量子电路。退相干难题激发了人们对这些电路(尤其是具有恒定深度和多项式大小的电路)功能的理论兴趣。为了解决有用的问题,非常浅的量子电路将需要同时作用于多个量子比特的门。那么一个主要问题是:是否存在既可能实现又足以在小(甚至恒定)深度下进行强大计算的多量子比特门?
碳化硅是量子技术的新兴平台,可提供晶圆级低成本工业制造。该材料还具有高质量缺陷和长相干时间,可用于量子计算和传感应用。利用一组氮空位中心和 XY8- 2 相关光谱方法,我们展示了室温下以 ~900 kHz 为中心的人工交流场的量子传感,光谱分辨率为 10 kHz。通过实施同步读出技术,我们进一步将传感器的频率分辨率扩展到 0.01 kHz。这些结果为碳化硅量子传感器向低成本核磁共振波谱仪迈出了第一步,该波谱仪在医学、化学和生物分析中具有广泛的实际应用。
近十年来,许多国家都在积极研究超导量子电路的基本量子特性 [1–3]。该领域的进展得益于新型量子比特的出现 [4, 5]、制造方法的改进 [6– 10]、系统尺寸的增加 [2–11] 以及量子比特的相干性 [2, 12]。超导量子比特的主要优势是制造工艺相对简单,采用半导体电子产品生产中广泛使用的标准电子束沉积和纳米光刻方法。超导量子比特的运行基于约瑟夫森效应。[12, 13] 的作者简要介绍了超导量子比特的主要类型,特别是相干时间达到数十和数百微秒的 transmons 和 fluxoniums。
摘要:由于量子比特非常宝贵,而决定可用计算时间的退相干时间却非常有限,因此量子电路的合成和优化是量子计算中重要且基础的研究课题。具体来说,在密码学中,确定实现加密过程所需的最小量子资源对于评估对称密钥密码的量子安全性至关重要。在本文中,我们研究了在使用少量量子比特和量子门的情况下优化线性层量子电路深度的问题。为此,我们提出了一个线性布尔函数的实现和优化框架,通过该框架,我们可以显著减少对称密钥密码中使用的许多线性层的量子电路深度,而无需增加门数。
错误率 p ad = 1 − e − tg /T 1 和 p pd = 1 − e − 2 tg /T ϕ 取决于门时间 tg、量子比特弛豫时间 T 1 和失相时间 T ϕ = 2 T 1 T 2 / (2 T 1 − T 2 ),其中 T 2 是量子比特相干时间。由于 tg 取决于正在执行的门,因此该噪声模型假设每个门的错误率都不同。为便于分析,我们假设单量子比特门错误率 p ad, 1 q = p pd, 1 q ≡ p 1 = 10 − 4 和双量子比特错误率 p ad, 2 q = p pd, 2 q = p 2 = 10 − 2 。这些值与当前硬件的值非常接近。在这里,我们将研究一个由两个噪声量子比特组成的系统。
更容易生成大尺寸量子态并保持量子比特数的当前记录;14 – 16它们的强相互作用也导致了退相干问题,只能在超低温和真空环境下工作。即使在这些条件下,这些电量子源仍然会遭受短态寿命的困扰。另一方面,光子以其弱相互作用而闻名,即使在室温下也可以实现长的相干时间,这使得它们适合于“飞行量子比特”应用。17 – 21然而,由于它们在正常介质中的相互作用很弱,它们并不被认为是构建大尺寸量子源的良好候选者。非线性光学介质是迄今为止建立光子间相互作用的最有效方式。使用自发参量下转换(SPDC)22或自发四波混频,23
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。