ix。TECHNICAL CHALLENGES AND SOLUTIONS........................................................42 A. Scalability and Integration..............................................................................................42 1.Technical Architecture.....................................................................................................42 2.Scaling Solutions............................................................................................................. 43 3.Resource Management....................................................................................................43 4.性能优化......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 44 5。System Reliability............................................................................................................ 44
压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
基因如何与环境相互作用?环境实际上如何进入身体以影响基因?当我们感知环境时,将信息的位编码为大脑中的记忆,其中由一系列神经连接组成,即大脑代码(请参阅第9章)。当感知发生时,新的感觉输入与现有内存相互作用并创建新的内存。由反复试验形成的原始记忆死于生物体。随着复杂大脑的演变,以脑部代码形式的记忆获得了从一个大脑跳到另一个大脑的能力,首先是通过模仿作为反复试验和错误的快捷方式,然后以语言,作为知识和信息。当内存达到可移植性时,它就会成为模因,复制信息的位(请参阅第8和第9章)。模因,例如基因,在与基因的复杂关系中经历了达尔文的进化。在我们时代,基因×模因×环境相互作用是理解心理健康和疾病的基础。本书将基因和模因的概念整合在理解疾病中是最终的共同途径脑功能障碍。大脑功能障碍由基因和模因决定的精神疾病的症状和迹象表现出来。部分。什么是精神疾病?表观遗传模型,我们考虑了基于基因×环境相互作用和压力的当前精神疾病模型。表观遗传学的概念 - 环境如何打开或关闭基因的概念。第二部分中。i介绍了模因的概念作为感知和记忆,从环境中引入的神经实体并与基因和现有模因互动,并为基因×模因×模因×精神疾病的环境相互作用建立了一个案例。进化和心理健康:基因,模因,文化和个人,我们讨论并整合了遗传学,进化和模因的基本概念,以及学习如何导致模因的出现。然后,我们检查模因如何实际存储在大脑中,以及它们如何在大脑中以及大脑外部演变为文化元素。我们讨论有益,共生和致病模因,以及后者如何“在雷达下”进入大脑。根据基因×模因×环境互动,我提出了心理健康和精神疾病,并建议当大脑中代表自我的模因的民主(自我复合)时,就会实现心理健康。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。