作者:JD Gramm · 2021 · 被引用 3 — 23 Krishnan,军事神经科学和即将到来的神经战时代。第 33 页。电气、化学、航空、电子等 9 个技术相继问世。
1962 年 2 月 13 日,罗马尼亚空军从俄罗斯盟友手中接收了首批 12 架米格 21F13 型战斗机。这些飞机由苏联飞行员驾驶到德韦塞卢空军基地。下一批飞机于 1963 年 8 月 15 日交付,当时第二个中队加入米哈伊尔科格尔尼恰努的第 57 战斗机团。当时,新型超音速“鱼床”战斗机与大量采购的现役米格 15 和米格 17 飞机一起飞行。20 世纪 60 年代末至 70 年代中期,米格 21 的其他子型号相继问世。 1964 年,米格 21PF 的初始版本交付,1965 年 1 月至 7 月期间,共接收了 38 架飞机,随后又接收了 56 架米格 21PFM,其中第一批飞机于 1966 年 1 月交付。罗马尼亚空军对这些飞机有自己的型号名称。米格 21PF 被称为 RFM“雷达、防御、现代化”,米格 21PFM 被称为 RFMM“雷达、防御、发动机、现代化”。维护人员和工程师也将米格 21PFM 称为米格 21SPS。
摘要:随着 AlphaGo 的突破,人机博弈人工智能迎来了大爆发,吸引了世界各地越来越多研究者的关注。作为检验人工智能的公认标准,各种人机博弈人工智能系统(AI)相继问世,如 Libratus、OpenAI Five 以及击败人类专业选手的 AlphaStar。人机博弈人工智能的快速发展标志着决策智能迈出了一大步,目前的技术似乎可以处理非常复杂的人机博弈。因此,一个自然而然的问题出现了:当前人机博弈技术可能面临哪些挑战,未来的趋势又是什么?为了回答上述问题,本文对近期成功的游戏 AI 进行了综述,涵盖了棋盘游戏 AI、纸牌游戏 AI、第一人称射击游戏 AI 和实时战略游戏 AI。通过本次综述,我们 1)比较不同类型游戏的主要难点以及实现专业人类水平 AI 的相应技术; 2)总结开发复杂人机博弈人工智能时可以适当依赖的主流框架和技术;3)提出成功人工智能中现有技术的挑战或缺点;4)尝试指出人机博弈人工智能的未来趋势。最后,我们希望这篇简短的评论可以为初学者提供入门知识,并为人机博弈人工智能领域的研究人员提供启发。
2018 年,美国估计有 42,220 例肝细胞癌和肝内胆管癌新发病例和 30,200 例死亡病例 [1]。这些死亡病例大多数是由于肝细胞癌 (HCC),这是最常见的原发性肝癌 [2]。在全球范围内,肝癌是癌症死亡的第四大原因 [3]。HCC 最常与慢性乙型肝炎病毒或丙型肝炎病毒感染有关,尤其是并发肝硬化,这限制了手术切除的可行性 [4]。对于适合手术的患者,肝移植和手术切除仍然是早期 HCC 最有效的治疗方法。不幸的是,绝大多数患者在被诊断为 HCC 时已处于晚期,肿瘤无法切除。以往,晚期HCC预后不佳,治疗仅限于经动脉化疗栓塞、射频消融、放射治疗和全身药物治疗[5]。欧洲SHARP试验首次证明,多靶点小分子酪氨酸激酶抑制剂(TKI)索拉非尼可延长不可切除的HCC患者的中位生存期,优于安慰剂[6]。随后,更多靶向药物相继问世,并在II期或III期临床试验中证明其有效且安全[7]。尽管已有研究将这些药物的有效性和安全性与索拉非尼或安慰剂进行了比较,但尚未进行过头对头比较[8]。为了进一步评估靶向药物治疗HCC患者的疗效和安全性证据,我们进行了贝叶斯网络荟萃分析(NMA)以比较不同HCC靶向药物的生存期、客观缓解率(ORR)和不良事件(AE)。
乳腺癌是女性最常见的恶性肿瘤,近年来发病率逐年上升,目前已位居女性肿瘤首位,且死亡率最高(1)。乳腺癌有4种分子亚型,其中约15%~20%的乳腺癌存在人表皮因子受体2(HER2)的过表达和/或HER2基因的扩增(2,3)。各亚型的生物学行为和治疗策略各有不同。对于HER2阳性乳腺癌,针对HER2的治疗已成为最重要且不可或缺的治疗手段(4)。由于曲妥珠单抗的出现,HER2阳性乳腺癌的治疗取得了显著进展,克服了其侵袭性强、复发风险高、预后差等缺点,曲妥珠单抗已成为该类癌症的一线治疗药物(5,6)。同时,新辅助治疗(NT)在HER2阳性乳腺癌的治疗中发挥着重要作用。既往研究表明,新辅助治疗获得的pCR可以预测长期生存,尤其是在HER2阳性亚组(7)。NeoSphere的5年随访证实,获得完全pCR的患者无病生存期(DFS)长于未获得完全pCR的患者(8)。2018年圣安东尼奥乳腺癌大会(SABCS)上公布的一项针对HER2阳性乳腺癌患者的研究结果显示:新辅助治疗后,pCR患者的5年DFS和总生存期(OS)分别为92.3%和98.1%。TRYPHAENA的3年随访也证实了DFS与pCR之间的相关性(9),因此其已成为NT环境下公认的长期生存的替代主要终点。然而,不可避免地会有部分患者出现耐药现象,甚至可能在整个治疗结束多年后出现复发、转移或死亡(10,11),因此寻找更有效、不良事件更少的治疗策略显得尤为重要。近年来,多种针对HER2的新型药物相继问世,包括大分子单克隆抗体帕妥珠单抗、小分子酪氨酸激酶抑制剂(TKI)拉帕替尼、吡咯替尼、曲妥珠单抗-美登素(T-DM1),为HER2阳性乳腺癌患者带来了更多的治疗选择。吡咯替尼是一种新型口服小分子TKI,耐受性良好,在HER2阳性晚期和转移性乳腺癌中表现出抗肿瘤活性(12,13)。然而,支持其疗效的证据尚不清楚。
新的太空经济领域正在兴起。几十年来,太空制造 (ISM) 的微重力研究一直很活跃,但持续生产盈利产品仍是一个非常新兴的行业。近年来,许多商业空间站、自由飞行平台和小型再入舱相继问世,旨在扩大该领域。太空工厂 (www.factoriesinspace.com) 是太空经济和微重力制造领域最大的商业实体公共数据库。太空制造 (ISM) 分为 3 个高级目的地。首先是太空 ISM,涉及与将在太空中使用的在轨建设相关的活动。其次是地球 ISM,包括在微重力下制造并返回地球时具有更好性能的新材料和产品。第三是月球、火星和小行星等表面的 ISM。与此同时,在交通、轨道平台、微重力通道、太空公用设施、太空采矿等领域,已经存在或正在开发各种支持服务提供商。论文的第一部分定义了太空制造的含义,并建立了分类以对商业实体进行分组。进行了文献综述以协助分类。在过滤数据库后,列出了关键参与者,以创建供应链的概述和调查。第二部分的工作带来了统计见解,即哪些类型的公司正在或旨在活跃于新兴的太空制造领域。所有 117 项太空制造活动被归类为:先进材料、生物技术、大型结构、微加工、新奇和奢侈品、纯物质或太空食品。在分类中,对受欢迎程度、目的地、状态、首次发射年份、地理分布和可用资金进行了比较。目前还没有积极重复的商业太空生产活动。许多产品已经展示但尚未重复或扩大规模。太空制造面临的最大挑战是找到潜在的盈利商品或材料,或者克服大量投资需求的“先有鸡还是先有蛋”问题,然后迎合小型或不存在的市场。太空中新的盈利和可持续经济活动有可能加速太空技术的发展和活动速度,这也将极大地有利于人类和机器人太空探索,这要归功于多用途系统。据作者所知,这种商业太空制造活动的行业调查以前从未发表过。关键词:太空制造、太空经济、ISM、ISAM、ISRU
简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎