生物材料科学与眼科和轨道手术中的临床实践融合,尤其是在眼睑后椎板的重建,富富的富富,轨道地板骨折以及植入植入物的植入物插座的植入物,代表材料符合纯净技术的植入物。这篇综述跨越了2015年至2023年的研究,研究了这些复杂领域中生物聚合物和功能生物材料的应用和整合。讨论首先要回顾外眼表面,泪液系统和轨道的关键解剖结构。然后总结了治疗影响外科表面和轨道受累的疾病的各种当前手术方法,重点是相关挑战。讨论继续概述了重建手术中使用的当前和新兴生物材料的优点和缺点,包括合成和天然聚合物。这些包括对眼睑结构重建,富富系统修复,轨道骨断裂修复和轨道插座重建的应用。在整个综述中,探讨了与这些重建程序相关的病理生理学和挑战,重点是手术细微差别和持续追求最佳的重建技术。最后,这篇评论是使临床医生熟悉当前知识并产生未来假设的宝贵资源。得出的结论是,目前在眼科手术中目前尚无基于证据的准则,涉及在重建程序中使用生物聚合物。需要进一步的研究来评估这些生物聚合物的功效和可重复性。
santen and Mitsubishi tanabe Pharma宣布结束日本Alesion®眼睑奶油的联合促销合同0.5%,这是对过敏性结膜炎的新方法
对于单极衍生,最多可以将四个用于测量数据的电极、一个作为参考的电极和一个作为接地的电极连接到电路板。两个耳夹,分别固定在一只耳朵上,用作接地和参考电极(见图 3,左)。如果将电极连接到前额,则使用平面电极,因为它具有更大的接触面积,因此可以提供更准确的结果。当将其连接到脑后时,使用尖刺电极,因为其尖端可以通过头发与头皮接触(见图 3,右)。电极通过 Velcro 带固定在头骨上,电路板由塑料盖保护(见图 3,左)。
背景。原发性眼睑痉挛 (BSP) 是最常见的局灶性肌张力障碍之一,其病理生理机制尚不清楚。采用无偏方法观察静息状态下 BSP 患者的全脑功能连接 (FC) 变化。方法。共招募 48 名受试者,包括 24 名未经治疗的 BSP 患者和 24 名健康对照者,进行功能性磁共振成像 (fMRI)。采用全脑 FC (GFC) 方法分析静息态 fMRI 数据。我们设计了支持向量机 (SVM) 方法来确定是否可以利用 GFC 异常来区分患者和对照组。结果。与健康对照者相比,BSP 患者的双侧上内侧前额皮质/前扣带皮层 (MPFC/ACC) 的 GFC 显著降低,而右侧中央后回/中央前回/副中央小叶、右侧上额叶 (SFG) 和左侧副中央小叶/补充运动区 (SMA) 的 GFC 升高,这些区域均包含在默认模式网络 (DMN) 和感觉运动网络中。SVM 分析表明,右侧中央后回/中央前回/副中央小叶中升高的 GFC 值可将患者与对照者区分开来,最佳准确度、特异度和灵敏度分别为 83.33%、83.33% 和 83.33%。结论。本研究表明感觉运动网络和 DMN 相关脑区 GFC 异常可能是 BSP 病理生理的基础,这为理解 BSP 提供了新的视角。右侧中央后回/中央前回/中央旁小叶的 GFC 可作为潜在的生物标志物,用于区分 BSP 患者和对照组。
针对运动障碍者的基于眼睛的互动经常使用笨拙或专业的设备(例如,具有非移动计算机的眼球射击器),主要专注于凝视和眨眼。然而,两个眼睑可以在不同的命令中打开并关闭不同的持续时间,以形成各种眼睑手势。我们迈出了第一步,以设计,检测和评估一组手势在移动设备上有运动障碍的人的眼睑手势。我们提出了一种算法,可以实时检测智能手机上的九种眼睑手势,并在两项研究中与十二个人和四名患有严重运动障碍的人进行评估。与运动障碍患者一起研究的结果表明,该算法可以检测以0.76和.69总体准确性和用户独立评估的总体准确性。此外,我们设计和评估了一种手势映射方案,允许仅使用眼睑手势导航移动应用程序。最后,我们提出了针对运动障碍者设计和使用眼睑手势的建议。
摘要 — 物联网系统使日常技术比以往任何时候都更加数字化,残疾人可能会感到被排斥在外。眼球运动/眨眼等免提手势方法可以增强与现代技术的互动。这项工作展示了通过眨眼进行眼睑手势控制,使用可穿戴磁系统,该系统由眼睑上的柔性磁条和带有模拟前端电路的自旋电子磁传感器组成。为了检测眨眼,将灵敏度为 11mV/V/Oe 的隧道磁阻 (TMR) 传感器嵌入眼镜框中。为了成功检测眼睑上直径 6 毫米、厚度 1 毫米的磁条产生的小磁场,设计了一个传感器读出电路来放大收集到的信号并消除外部噪声和偏移。该电路能够滤波 <0.5 Hz 的低频和直流偏移。高于 >28 Hz 的高频会被滤除磁场和眼睑运动噪声。每个 TMR 传感器电路都配备有固定增益放大器,用于检测毫米级磁条的低磁场。眨眼可以在设定的时间范围内重复,并且由于会检测到双眼睑,因此可以使用多种命令组合进行分类。基于磁场模拟结果,该电路经过了模拟,并显示出高重复性和稳定性,可以根据幅度阈值对眨眼进行分类。因此,可以在蓝牙微控制器上缩放和分类信号,该微控制器能够连接到各种支持蓝牙的设备,以便残疾人士与外部技术进行通信。
2015 年,圣卡洛斯大学讲师 See 博士率领菲律宾代表团参加了为期两周的 Sakura 科学交流项目,该项目由城西大学药物安全管理实验室(Yutaka Inoue 教授)主办。这是他第一次在日本进行学术交流。他对日本文化和学术体系的短暂接触加深了他对药学研究的兴趣,并激励他继续深造。在接下来的三年里离开舒适的家是一个艰难但富有成效的决定。第二年春天,他加入了著名皮肤科学家 Kenji Sugibayashi 教授的实验室,在那里他们开创了通过眼睑皮肤输送眼科药物的技术。经过共同努力,他们发表了 4 篇关于眼睑皮肤药物输送的科学论文、3 次国际研究报告、2 次最佳口头报告奖,并成为第一位获得该奖项的菲律宾药学科学家。