聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展
•在过程的每个阶段培养包容性是成功参与的关键。证据表明,考虑到多样性,专业知识和公民社会自我选择的原则,积极与代表性不足的群体积极接触的一项包容和透明的利益相关者选择过程可以对结果的参与过程和所有权的合法性产生重大差异。可以通过多种方式来促进包容性,例如,旨在在参与者中进行地理和主题平衡,在线和离线参与工具设计以巩固地理和技术障碍,并为可能需要更多资源和专业知识的利益相关者提供能力和实践支持,以便建立能力和实践支持,以便全面参与国际决策过程。
a。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。 但是,在低温下处理高效的光伏设备仍然具有挑战性。 在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。 我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。 因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。 通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。 值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。但是,在低温下处理高效的光伏设备仍然具有挑战性。在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。
摘要:随着公共交通系统中电池电动总线(BEB)的采用,对精确的能源消耗预测的需求变得越来越重要。准确的预测对于优化路线,充电时间表和确保足够的操作范围至关重要。本文介绍了一种创新的预测方法,该方法将推进和辅助能量模型与新颖概念(环境发生器)结合在一起。这种方法解决了电动总线能源预测的主要挑战:估计未来的环境状况,例如天气,乘客负载和交通模式,这会对能源需求产生重大影响。环境发生器通过为能量模型提供现实的输入数据而起着至关重要的作用。这项研究验证了具有不同级别模型复杂性的各种模型与一年以上的案例研究中的现实运营数据,在德国哥廷根有16台电动总线。我们的分析彻底研究了影响能量消耗的因素,例如高度,温度,乘客负载和驾驶模式。为了在不同的操作条件下全面理解能源需求,该方法将数据驱动的模型和物理模拟整合到模块化且高度准确的能量预测器中。结果证明了我们方法在提供更准确的能源消耗预测方面的有效性,这对于有效的电力总线车队管理至关重要。这项研究有助于电动汽车能源预测的知识不断增长,并为过境当局和运营商提供了实用的见解,以优化电动巴士运营。
摘要:随着公共交通系统中电池电动总线(BEB)的采用,对精确的能源消耗预测的需求变得越来越重要。准确的预测对于优化路线,充电时间表和确保足够的操作范围至关重要。本文介绍了一种创新的预测方法,该方法将推进和辅助能量模型与新颖概念(环境发生器)结合在一起。这种方法解决了电动总线能源预测的主要挑战:估计未来的环境状况,例如天气,乘客负载和交通模式,这会对能源需求产生重大影响。环境发生器通过为能量模型提供现实的输入数据而起着至关重要的作用。这项研究验证了具有不同级别模型复杂性的各种模型与一年以上的案例研究中的现实运营数据,在德国哥廷根有16台电动总线。我们的分析彻底研究了影响能量消耗的因素,例如高度,温度,乘客负载和驾驶模式。为了在不同的操作条件下全面理解能源需求,该方法将数据驱动的模型和物理模拟整合到模块化且高度准确的能量预测器中。结果证明了我们方法在提供更准确的能源消耗预测方面的有效性,这对于有效的电力总线车队管理至关重要。这项研究有助于电动汽车能源预测的知识不断增长,并为过境当局和运营商提供了实用的见解,以优化电动巴士运营。
聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展