旋转变压器驱动器利用 56F80x 的两个 ADC 通道和一个定时器。在此特定应用中,必须将 ADC 通道配置为同时采样正弦和余弦信号。定时器提供方波信号的生成。该信号进一步由外部硬件调节为便于激励旋转变压器的形式。控制器根据旋转变压器测量的正弦和余弦信号估计转子轴的实际角度。然而,控制器不仅专用于实现 R/D 转换,因此旋转变压器的软件驱动程序必须以能够链接并在现有应用程序(例如 PMSM 矢量控制应用程序)中运行的方式进行设计。
旋转变压器驱动器利用 56F80x 的两个 ADC 通道和一个定时器。在此特定应用中,必须将 ADC 通道配置为同时采样正弦和余弦信号。定时器提供方波信号的生成。该信号进一步由外部硬件调节为便于激励旋转变压器的形式。控制器根据旋转变压器测量的正弦和余弦信号估计转子轴的实际角度。但是,控制器不仅专用于实现 R/D 转换,因此旋转变压器的软件驱动程序必须以能够链接并在现有应用程序(例如 PMSM 矢量控制应用程序)内运行的方式进行设计。
旋转变压器驱动器利用 56F80x 的两个 ADC 通道和一个定时器。在此特定应用中,必须将 ADC 通道配置为同时采样正弦和余弦信号。定时器提供方波信号的生成。该信号进一步由外部硬件调节为便于激励旋转变压器的形式。控制器根据旋转变压器测量的正弦和余弦信号估计转子轴的实际角度。然而,控制器不仅专用于实现 R/D 转换,因此旋转变压器的软件驱动程序必须以能够链接并在现有应用程序(例如 PMSM 矢量控制应用程序)中运行的方式进行设计。
第 2 级在将运载火箭从大气阶段过渡到外层空间的深真空阶段起着至关重要的作用,可以精确高效地将其推向目的地。Kalam-250 采用高强度碳复合火箭发动机,配有固体燃料和高性能乙烯-丙烯-二烯三元共聚物 (EPDM) 热保护系统 (TPS)。它还具有碳烧蚀柔性喷嘴,可实现精确的推力矢量控制。Vikram-1 标志着印度首次私人轨道火箭发射,此前 Vikram-S 于 2022 年 11 月进行了亚轨道太空发射。它展示了印度在太空技术和探索方面不断进步的能力。
hil(印度)有限公司以前称为印度斯坦杀虫剂有限公司(HIL),政府。印度企业,根据该部门。化学和石化化学物质和化学肥料部,政府。于1954年3月成立,目的是为印度政府发起的全国疟疾根除计划提供滴滴涕。随后,该公司多样化为农业农药,以满足农业部门的要求,并已增长。目前,该公司还在农业投入中运营,即农业化学物质,种子,最近它冒险使用肥料,因此可以在一个屋顶下满足农业社区的所有要求。HIL扩大了其技术产品的产品概况,并正在研究DDT替代品的开发。hil(印度)有限公司还开发了用于杀虫治疗的网的技术,目前正在WHO作为替代矢量控制工具中促进。
1,2电气工程系,IET Bhaddal技术校园,旁遮普邦,印度摘要这项工作在从风能和太阳能混合能源的隔离位置中对微网格进行了控制。 用于风能转换的机器是双喂养发电机(DFIG),并且电池库连接到它们的普通直流总线。 太阳能光伏(PV)阵列用于转换太阳能,该太阳能使用DC-DC Boost Converter以具有成本效益的方式在DFIG的普通DC总线上撤离。 电压和频率通过线侧转换器的间接矢量控制来控制,该侧面转换器与落下特性合并。 它根据电池的能量水平来改变频率设定点,该电池的能量水平放慢了电池的充电或排放。 当风能源不可用时,系统也能够工作。 风能和太阳能块在其控制算法中具有最大功率点跟踪(MPPT)。1,2电气工程系,IET Bhaddal技术校园,旁遮普邦,印度摘要这项工作在从风能和太阳能混合能源的隔离位置中对微网格进行了控制。用于风能转换的机器是双喂养发电机(DFIG),并且电池库连接到它们的普通直流总线。太阳能光伏(PV)阵列用于转换太阳能,该太阳能使用DC-DC Boost Converter以具有成本效益的方式在DFIG的普通DC总线上撤离。电压和频率通过线侧转换器的间接矢量控制来控制,该侧面转换器与落下特性合并。它根据电池的能量水平来改变频率设定点,该电池的能量水平放慢了电池的充电或排放。当风能源不可用时,系统也能够工作。风能和太阳能块在其控制算法中具有最大功率点跟踪(MPPT)。
摘要。已经进行了一项系统研究,以调查使用现有的探空火箭技术、方法和实践来降低将小型轻型卫星送入低地球轨道的成本。利用此类技术节省的成本主要是由于助推器设计和操作的简化。将一颗 150 公斤的卫星发射到 200 海里的太阳同步轨道被选为目标要求。为桑迪亚国家实验室的 Strypi 级亚轨道探空火箭开发的设计和操作实践已应用于具有足够助推性能的车辆配置,以满足这一目标。“Super-Strypi”旋转助推器系统是轨道发射的,在大气层中飞行时会沿非制导、翼稳定弹道飞行。大气层外上级使用旋转稳定来在燃烧期间保持恒定的推力方向,从而消除了动力飞行期间主动推力矢量控制系统的复杂性。上级点火的“故障安全”指令启用理念消除了指令破坏飞行终止系统的需要。假设每年至少发射两次,预计本研究中提出的概念每次发射的经常性成本约为 500 万美元。
1.感应电机驱动研究。2.交流驱动器的 V/F 和矢量控制操作模式研究。3.交流驱动器参数研究 – I。4.交流驱动器参数研究 – II。5.将交流驱动器与 PLC-I 连接。6.将交流驱动器与 PLC-II 连接。7.使用微控制器设计步进电机驱动器。8.带编码器反馈的 PMDC 驱动器设计。9.伺服驱动与位置控制研究。10.DCS-I研究。11.DCS-II研究。12.HMI研究。13.HMI配置-I。14.HMI配置-II。15.HMI配置-III。16.SCADA研究。17.SCADA 配置 - I.18.SCADA 配置 - II.19.SCADA 配置 - III.20.基于 PC 的 DAS-I 研究 21.基于 PC 的 DAS-II 研究 22.数据通信协议研究 - I.23.数据通信协议研究 - II.24.控制阀研究 - I.25.控制阀研究 - II.26.位移传感器的研究。27.液位测量的研究。28.应变计和扭矩测量的研究。29.在 MATLAB 上进行过程控制仿真 - I。30.在 MATLAB 上进行过程控制仿真 - II。31.在 MATLAB 上进行过程控制仿真 - III。
摘要。自主火箭着陆是航空航天工程中的关键里程碑,这是实现安全且具有成本效益的太空任务的关键。本文介绍了一种开创性的方法,该方法采用了强化学习方法来提高火箭着陆程序的精确性和效率。基于逼真的Falcon 9模型,该研究集成了复杂的控制机制,包括推力矢量控制(TVC)和冷气推进器(CGT),以确保敏捷推进和平衡调整。观察数据,传递关键参数,例如火箭位置,方向和速度,指导强化学习算法做出实时决策以优化着陆轨迹。通过战略实施课程学习策略和近端政策优化(PPO)算法,火箭代理进行了迭代培训,稳步提高了其在指定垫上执行软着陆的能力。实验结果强调了所提出的方法的疗效,在实现精确和受控下降方面表现出非常熟练的能力。这项研究代表了自主着陆系统的进步,准备彻底改变太空探索任务,并在商业火箭企业中解锁新的边界。
对小型卫星发射机会的需求逐年增加,尤其是对低成本和灵活访问的需求。由于任务、要求和限制各异,许多小型卫星需要专门的发射才能按计划到达预定轨道。尽管与前几年相比,拼车和低成本的专用发射等选择更为常见,但对小型卫星发射服务的需求仍然很高。这一趋势在日本和其他亚洲国家也很明显,因为目前,从当地发射的机会很少。为了解决这一短缺问题,总部位于日本北海道的星际技术公司正在开发两级轨道级运载火箭 ZERO。ZERO 的开发侧重于通过大规模生产、模块化和标准化组件以及内部设计运载火箭系统等方法来降低发射成本。发动机、涡轮泵、推进剂箱、整流罩结构、航空电子设备和地面基础设施等关键部件的大部分工程都是内部完成的。最近的开发更新包括液态生物甲烷发动机燃烧室的水平静态热火试验、涡轮泵的冷流试验、推进剂箱的增压试验、整流罩分离试验和推力矢量控制系统试验,均为缩比原型。本文将介绍星际技术公司如何开发 ZERO 以满足小型卫星的需求并降低进入太空的障碍。