光学集体汤姆逊散射用于诊断伦敦帝国理工学院 Magpie 脉冲功率发生器的磁化高能密度物理实验。该系统使用来自 Nd:YAG 激光的 2 次谐波的放大脉冲(3 J、8 ns、532 nm)来探测各种高温等离子体物体;密度在 10 17 -10 19 cm -3 范围内,温度在 10 eV 到几 keV 之间。散射光从等离子体内 100 µ m 级体积中收集,然后成像到光纤阵列上。多个收集系统从不同方向观察这些体积,同时使用不同的散射 K 矢量(和不同的相关 α 参数,通常在 0.5 – 3 范围内)进行探测,从而可以独立测量大量等离子体流的不同速度分量。光纤阵列与带有门控 ICCD 的成像光谱仪耦合。该光谱仪配置为观察集体汤姆逊散射光谱的离子声波 (IAW)。用理论谱密度函数 S ( K , ω ) 拟合光谱可测量局部等离子体的温度和速度。拟合受到激光干涉仪对电子密度的独立测量以及不同散射矢量的相应光谱的限制。这种 TS 诊断已成功应用于广泛的实验,揭示了磁化冲击、旋转等离子体射流和内爆线阵列内的温度和流速转变,以及提供磁重联电流片内漂移速度的直接测量。I. 简介
抽象的文献中高维功能的许多相关性不平等,例如哈里斯 - 克莱特曼不平等,fortuin – kasteleyn-ginibre不平等和著名的高斯相关性不平等,罗伊(Royen)的著名高斯相关性不平等,是确定的两种功能,都表明某种功能具有某种类型类型的具有非代名词的功能。预先的工作使用了马尔可夫半群论证来获得其中一些相关性不平等的定量扩展。在这项工作中,我们通过使用复杂分析的工具证明了一种新的极端界限来增强这种方法,以获得一系列新的和近乎最佳的定量相关性不平等。这些新结果包括:Royen著名的高斯不平等现象的定量版本(Royen,2014年)。(Royen,2014年)Royen确认了一个猜想,以40年的态度开放,指出在任何中心的高斯分布下,任何两个对称凸组都必须无关。我们根据两个凸组集合的矢量的矢量给出了相关性的下限,从概念上类似于塔拉格兰德的定量相关性,该定量相关性绑定了{0,1} n(combinatorica 16(combinatorica 16(2):243-258,1996)的单调布尔函数的定量相关性。我们表明,我们的Royen定理的定量版本属于最佳的对数因素。在任何有限的产品概率空间上,单调功能的著名FKG不等式的定量版本。这是talagrand的定量相关性的广泛的一般性化,以{0,1} n
组合片段的序列和所得的吸光度光谱用于开发计算模型,以预测片段的进一步组合,从而导致其他新型颜色。用适配器(TwistBioscience®,South San Francisco,CA)重新排序基因片段,以进行扩增,并使用Q5®热启动High Fidelity 2X Master Mix(NEB#M0494)在50 µL反应中放大了PCR,并使用Spri®Beads清洁,并在100 µL水中洗净。使用Opentrons OT-2,将包含目的地矢量的主混合物和15 µL Nebridge Golden Gate组件套件(BSAI-HFV2)的组件组件组装在4°C温度模块上,然后通过涡旋将其混合在甲板上。然后,液体处理程序在没有温度控制的情况下将主混合物分布在96孔板上。使用OT-2,在3小时以上(总计576个零件)的过程中,将每个组件的6个零件移动。然后将板密封,并进行37°C的30个循环1分钟16°C 1分钟,然后在60°C的最终持有5分钟。2 µL转化为20 µL T7 Express Compation E.Coli。5 µL的稀释或浓缩转化铺在LB KAN上,并在37°C下生长过夜。菌落生长后,将它们从孵化器中取出,并允许在台式上开发颜色过夜,然后在4°C的冰箱中发育。
1. 词汇表和缩略语 遥感和地理信息系统领域积累了大量技术词汇、短语和首字母缩略词。本报告开头列出了这些词汇、短语和首字母缩略词,以供参考并帮助理解后面的讨论。 吸收:从辐射光谱中去除能量。 反照率:从表面反射的入射光的百分比。相当于反射率。 反太阳点:从观察者角度看,正对太阳的位置;潜在的阴影位置。球面上与太阳成 180 度角的点。 方位:倾斜表面所面对的方位角。 姿态:观景台(如飞机)的方位。 方位角:水平方向角,0 度 = 北,90 度 = 东,等等。 后向散射:辐射大致朝光源的反向偏转。 波段:与特定波长范围有关。 波段组合:用于可视化或计算的一组波段。波段比例:用一个影像波段划分另一个波段,以减少阴影效应并增强差异。 BGR:蓝绿红;显示色带的顺序;与 RGB 顺序相反。 黑体:完全吸收辐射的物体。 注:在热平衡下,黑体的吸收和辐射速率相同;当保持热平衡时,辐射刚好等于吸收。这个假想的物体由足够数量的分子组成,这些分子发射和吸收电磁波谱所有部分的电磁辐射,以便所有入射辐射都被完全吸收,并且在所有波段和所有方向上都能实现最大可能的辐射。 CAD:计算机辅助设计;一组点、线、多边形、形状、文本,通常没有矢量的严格拓扑规则。 校准:将数值调整为标准参考。
摘要 本研究调查了安装在螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统在净推力损失最小的情况下支持前向力。矢量系统本身既可以放置在独立螺旋桨配置中,也可以放置在机翼内螺旋桨配置中。代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。灵敏度分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显着改善。实现了推力矢量控制,随后俯仰力矩发生变化,在两种螺旋桨俯仰情况下,叶片偏转角逐渐增加:75° 和 90°。标准 90° 俯仰方向的集成式机翼螺旋桨系统的风洞试验结果显示,在前进比低于 0.3 时,推力矢量控制成功,这对于大多数相关应用而言都是实用的;螺旋桨叶片系统的 75° 俯仰方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式情况具有更好的推力矢量控制能力。致谢 衷心感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究计划提供的支持。另一位重要的捐助者蔡杰龙先生(Jacky)对本作品在整个过程中给予的持续指导深表感谢。
1.词汇和缩写 遥感和地理信息系统领域积累了大量技术词汇和短语以及首字母缩略词。这些列在本报告的开头,以供参考并帮助理解后面的讨论。吸收:从辐射光谱中去除能量。反照率:从表面反射的入射光的百分比。相当于反射率。反太阳点:从观察者的角度来看,与太阳正对的位置;潜在的阴影位置。球面上与太阳成 180 度的点。方位角:倾斜表面朝向的方位角。姿态:观景台(例如飞机)的方向。方位角:水平方向角,0 度 = 北,90 度 = 东,等等。反向散射:辐射大致朝源方向的反向偏转。波段:与特定波长范围有关。波段组合:用于可视化或计算的一组波段。波段比率:将一个图像波段除以另一个图像波段,以减少阴影效果并增强差异。BGR:蓝-绿-红;显示色带的顺序;与 RGB 顺序相反。黑体:不反射辐射的全吸收体。注意:在热平衡中,黑体的吸收和辐射速率相同;当保持热平衡时,辐射将刚好等于吸收。这个假设的物体由足够数量的分子组成,这些分子发射和吸收电磁波谱所有部分的电磁辐射,因此所有入射辐射都被完全吸收,并且在所有波长带和所有方向上,都能实现最大可能的发射。CAD:计算机辅助设计;一组点、线、多边形、形状、文本,通常没有矢量的严格拓扑规则。校准:将数值调整为标准参考。
卤素和渗透剂酵母菌dealomyces Hansenii具有很高的细胞工厂应用潜力,因为它抵抗了严峻的环境因素以及与广泛的底物范围的兼容性。但是,目前可用的遗传技术不允许汉斯内尼作为细胞工厂的全部潜力。此外,大多数当前可用的工具都依赖于不适合野生型原型营养菌株的补充营养标记。此外,当需要精确的基因靶向时,首选的非同源末端连接(NHEJ)DNA损伤修复机制会带来进一步的挑战。在这项研究中,我们提出了一种新型的基于质粒的CRISPR CUG /CAS9方法,用于易于有效的基因编辑。我们的工具集设计基于主要标记,并促进了表达Cas9和单个或多个单个指南RNA(SGRNA)的矢量的快速组装,这些载体即使在原养菌株中也为多路复用基因工程提供了可能性。此外,我们已经构建了缺乏的nhej hansenii,使我们的crispr cug /cas9工具能够支持点突变和单个 /双基因缺失的高效引入。重要的是,我们还证明了90-NT单链DNA寡核苷酸足以直接修复SGRNA-CAS9诱导的DNA断裂,从而导致精确的编辑达到100%效率。总而言之,本研究中开发的工具将在D. Hansenii中大大推进基础和应用研究。此外,我们设想我们的工具可以迅速适应其他非惯性酵母菌物种的基因编辑,包括属于CUG的酵母菌物种。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
摘要 . 量子力学中的不确定性问题通常被认为是经典力学和物理学在离散(量子)变化情况下的广义确定性,它被解释为一个唯一的数学问题,涉及一组独立选择与一个有序序列之间的关系,因此由选择公理和有序“定理”的等价性所调节。前者对应于量子不确定性,后者对应于经典确定性。无需其他前提(除了上述唯一的数学等价性)来解释量子力学的概率因果关系如何指的是经典物理学的明确确定性。同样的等价性是量子力学数学形式的基础。它融合了海森堡矩阵力学矢量的有序分量和薛定谔波动力学波函数的无序成员。这种合并的数学条件就是选择公理和良序定理的等价性,这反过来又意味着马克斯·玻恩对量子力学的概率解释。特别是,能量守恒的证明方式与经典物理学不同。这是由于所讨论的等价性而不是最小作用原理。人们可能涉及两种形式的能量守恒,分别对应于经典物理学的平滑变化或量子力学的离散变化。此外,这两种变化可以在统一的能量守恒下相互等同,并且要研究违反能量守恒的条件,从而指向能量守恒的某种概括。关键词:因果关系、选择和良序、决定论、量子力学的希尔伯特空间、不确定性、概率因果关系史前史、背景和上下文:不确定性是量子力学最引人注目和最基本的特征之一,因此甚至挑战或概括了精确和实验科学的理念。量子测量的任何单一结果从根本上来说都是随机的。描述仪器及其读数的经典物理学的光滑定律只能以这种代价与任何量子实体的离散量子变化统一起来。
4月份的MTA/BMA(M/F/D)科学技术助理作为完整的时间职位。该职位最初限于3个月;计划了长期的观点。您的责任领域是该研究所神经遗传学研究小组(Praschberger博士)研究项目的科学技术支持。成功的候选人可以期待各种责任领域,高水平的参与室以及学习令人兴奋和创新的方法的机会。特别是,重点是新果蝇模型的生产和表型,以及基于人类干细胞的神经遗传疾病的神经元细胞模型(尤其是模型中的转基因和CRISPR敲击,但也是RNAi和敲除模型) - 这是通过在工作过程中的密切合作来学到的。如果您有任何疑问,请联系:roman.praschberger@i- med.ac.at.。先决条件是一项完整的培训,是MTA文凭,科学学士学位,硕士,M.Sc。的生物医学分析师。或类似成功的候选人还具有在实验室工作,团队合作以及独立参与和对科学问题的兴趣中的高度准确性和责任感的特征。需要经典湿法实验室方法,例如PCR,质粒矢量的克隆,蛋白质印迹以及对基于计算机的分析方法的高水平和开放性的知识。特殊方法,例如共聚焦显微镜。此用途的每月最低工资目前为3,071.30欧元(每年14倍),并且可以通过对活动特定的 - 特定前经验和其他与工作场所特殊特征相关的活动的质疑和其他赔偿组成部分来增加集体协议法规。如果您有兴趣,请发送您的申请文件,说明参考“ TA-2025-神经遗传学”:Dr.Med教授。J. Zschocke,博士,人类埃斯塔斯研究所 1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.atJ. Zschocke,博士,人类埃斯塔斯研究所1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.at