电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。
1. 预期用途/适应症 癫痫(美国以外)——VNS 治疗系统适用于作为辅助疗法,减少以部分性发作(有或无继发性全身性发作)或对癫痫药物无效的全身性发作为主的癫痫患者的发作频率。AspireSR®、SenTiva® 和 SenTiva DUO™ 具有自动刺激模式,专为伴有心律加快(称为发作性心动过速)的癫痫发作患者而设计。 2. 禁忌症 迷走神经切断术——双侧或左侧颈部迷走神经切断术后的患者不能使用 VNS 治疗系统。 透热疗法——请勿对植入 VNS 治疗系统的患者使用短波透热疗法、微波透热疗法或治疗性超声透热疗法。诊断性超声不属于此禁忌症。 3. 警告 — 一般规定 医生应告知患者有关医生手册中讨论的所有潜在风险和不良事件。本文件并非旨在替代完整的医生手册。VNS 治疗系统在医生手册“预期用途/适应症”一章以外的用途的安全性和有效性尚未确定。VNS 治疗系统对心脏传导系统(折返通路)易患功能障碍的患者安全性和有效性尚未确定。如有临床指征,建议进行植入后心电图和动态心电图监测。患有某些潜在心律失常的患者可能会出现术后心动过缓。遵循医生手册植入程序一章中描述的推荐植入程序和术中产品测试非常重要。在术中系统诊断(导线测试)期间,偶尔会发生心动过缓和/或心搏停止事件。如果在系统诊断(导联测试)或刺激开始时出现心搏停止、严重心动过缓(心率 < 40 bpm)或临床上显著的心率变化,医生应准备遵循与高级心脏生命支持 (ACLS) 一致的指导方针。主动刺激可能会出现吞咽困难,吞咽困难加剧可能会导致吸入。已有吞咽困难的患者吸入风险更大。主动 VNS 治疗可能会出现呼吸困难(气短)。任何患有潜在肺部疾病或功能不全(如慢性阻塞性肺病或哮喘)的患者都可能面临更高的呼吸困难风险。
B为VI族元素,例如Bi 2 Se 3 、Bi 2 Te 3 、Sb 2 Te 3 和In 2 Se 3 ,由于其独特的电子性质而受到越来越多的关注。 [2] 例如,半导体In 2 Se 3 表现出厚度相关的带隙(从块状晶体的1.3 eV到单层的2.8 eV)。 [3] 与无间隙石墨烯和过渡金属二硫属化合物相比,In 2 Se 3 的电子性质显示出明显的优势,后两者仅在单层中表现出相对较大的带隙(1.5–2.5 eV)。 [4] 当用作光学材料时,In 2 Se 3 表现出高吸收系数、宽范围响应度(从紫外线(325 nm)到短波长红外(1800 nm))和高灵敏度。 [5] 与其他对空气敏感的直接带隙二维材料(如黑磷(BP)[1c])不同,完整的 In 2 Se 3 薄片在空气中非常稳定。最近,基于单个 In 2 Se 3 纳米片的光电探测器具有高光敏性(10 5 AW − 1 )和快速、可逆和稳定的光响应特性。[5] In 2 Se 3 的优异性能优于许多其他二维材料(如石墨烯、BP 和 MoS 2 ),为大面积光电探测器提供了重要的基础。[6] 尽管如此,具有大晶畴的无缺陷 In 2 Se 3 薄片的可扩展生产仍然是其实际应用的障碍。微机械剥离是生产高质量薄 In 2 Se 3 纳米片的最著名方法。[5,7] 然而,它的剥离产率极低,仅适用于基础研究。 [8] 克服这一限制的潜在方案包括化学气相沉积、[2c] 液相剥离 [9] 和湿化学合成。[10] 然而,这些方法制备的 In 2 Se 3 薄片通常具有大量缺陷和较差的光电性能。[9,11] 例如,通过气相沉积获得的 In 2 Se 3 纳米片的光响应度(3.95 × 10 2 AW − 1)明显低于透明胶带剥离薄片(10 5 AW − 1)。[8] 从基本角度来看,In 2 Se 3 是一种由弱范德华力连接的层状材料,层间距离为 0.98 nm,比许多其他层状化合物(0.3–0.7 nm;图 1 a、b;图 S1,支持信息)大得多。因此,插入客体分子或离子,特别是在溶液中电流的驱动下,可以成为将二维晶体分层成单个薄片的合理策略。[12]
文本S1。涡流数据集的数据预处理程序数据的原始采样频率为半小时。数据过滤过程可以概括如下:首先,要在夜间测量中降低噪声,用明智的热通量> 5 w/m 2和短波输入辐射> 50 W/m 2对原始数据进行过滤,以选择白天的数据。然后,将原始数据平均为每日比例值(将降水计算为每日总和)。其次,我们只保留一小部分优质数据> 0.8。使用已建立的方法对输入特征的时间序列中的差距进行了插值(Reichstein等,2005; Vuichard和Papale,2015)。我们还按站点进行视觉检查,以确保可以接受信噪比。请注意,校正了来自涡流协方差的所有半小时LE数据,以使用Bowen比率方法实现能量平衡(Twine等,2000)。由于数据限制,仅使用最浅的土壤水分测量值与干燥期间的蒸发分数预测动态进行比较。文本S2。模型解释 - 综合梯度(IG)开发了集成梯度来解释受过训练的模型,从而可以获得对每日EF预测的每个样本的输入特征的时间特征的重要性(Jiang等,2022; Sundararajan等人,2017年)。IG方法可以拆除基于LSTM的机器学习模型,并追溯输入的特定贡献,并在预测前的每个时间为每个功能分配重要性得分。较大的正Ig评分可能表明该特征大大提高了蒸发分数预测(例如,在最近端的时间内的降水可能对当前蒸发分数的预测比早期的降水更大。)较大的负IG分数表明该特征降低了EF预测。IG得分接近零表示对EF预测的影响很小。以这种方式,我们的模型不仅可以显示一般特征的重要性,而且还可以在预测之前的每个时间步骤显示不同的特征重要性。更具体地说,这意味着对于不同种类的PFT的EF预测,将考虑输入特征的时间长度,其中暗示在特定的极端事件或环境条件下,例如具有不同严重性水平的干旱,植物的植物响应具有不同的生根深度。输入特征X的IG评分(例如,在第i th时间步骤中降水的特定贡献)被表达为:
如今,已有多种基于星载和低空空中/无人机平台的高光谱遥感传感器可用于地球科学应用,具有多种光谱和空间分辨率[1-4]。高光谱遥感图像的发展促进了新型图像处理技术的发展,并在土壤地球化学、水质评估、森林物种制图、农业压力、矿物蚀变制图等广泛领域取得了令人欣喜的成果。在过去的二十年里,不同的空间机构发射了多个星载高光谱传感器(例如,美国国家航空航天局 (NASA) 于 2000 年 11 月发射的 Hyperion;日本宇宙航空研究开发机构 (JAXA) 于 2019 年 12 月发射的高光谱成像仪套件 (HISUI);意大利航天局 (ASI) 于 2019 年 3 月发射的高光谱应用任务前体探测器 (PRISMA))[1,5,6]。这些传感器充分利用了高光谱数据,并带来了从噪声消除到光谱制图等数据处理方法的创新。先前的研究强调了高光谱星载传感器在识别纯目标和识别具有弱光谱特征的光谱目标方面的局限性,因为这些高光谱传感器具有粗空间分辨率(通常为 20 m 至 30 m)和较差的信噪比(例如,Hyperion 在短波电磁域中的信噪比 (SNR) 较差)[7-10]。然而,这些星载传感器在环境监测方面取得了令人鼓舞的结果(例如,森林覆盖分类、检测森林的物候变化、土地利用/土地覆盖制图、农业土地覆盖表征、作物压力估计、岩性和矿物制图 [11-13])。高光谱图像处理解决了与分类方法相关的主要困难,例如相关数据的高维性和标准处理技术的有限可用性[14]。为了克服这些局限性,最近建立了几种机器学习算法,补充了高光谱数据处理的巨大潜力[14]。由于星载高光谱传感器缺乏全球覆盖,不同国家使用不同的先进高光谱传感器进行常规的基于飞机和无人机的高光谱调查,例如先进的可见红外光谱仪(AVIRIS)及其最新版本AVIRIS-下一代(AVIRIS-NG);HyMap;数字机载成像光谱仪(DAIS)等。这些传感器能够收集
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。