4.0414社区商业(CC),该地区的名称应用于主要和/或标准的动脉街道交叉口的主要商业开发的较大节点。该地区为周围社区提供比中等商业区更大的贸易区的社区服务,但仍具有与相邻住宅物业的兼容性建筑尺寸限制。CC区将容纳各种社区规模的商业用途,包括零售,服务和办公室。该地区还允许住房作为次要用途,并与商业建筑一起开发了多户家庭。新建筑物将以行人为导向,在建筑物后面或旁边放置停车位。第7.0100节中的设计标准针对符合第7.0003节中描述的阈值的新建筑和改建,将有助于确保新建筑物成为现有和发展中的社区的吸引力。
摘要用于生产清洁饮用水的摘要,即在瞬态水流中不饱和区域中细菌重新启动的过程至关重要。尽管含有含水的含水层补给是处置病原体的有效方法,但人们担心沉淀后的重新固定。可以更好地了解最初保留在多孔培养基中的细菌如何由于瞬态水含量,运输实验和大肠杆菌和肠球菌摩拉维氏菌的建模而释放到地下水中。用细菌悬浮液接种沙丘砂柱后,以24小时的间隔进行了三个降雨事件。收集了从沙柱中的EF充足,以分析细菌突破曲线(BTC)。降雨实验后,确定了砂柱中的细菌分布。使用不同的模型概念(包括一站动力学附件/脱离(M1),Langmuirian(M2),Langmuirian和Blocking(M3)和两站点附件/分离(M4),使用不同的模型概念(M1),Langmuirian(M2)和两站附件(M4)对收集的BTC和ProFEL保留进行建模。接种后,几乎99%的细菌保留在土壤中。M1和M2细菌模型在观察到的浓度和建模浓度之间具有很高的一致性,并且附着和脱离是在水流中具有频率的多孔培养基中调节细菌运动的两种显着机制。在体验结束时,大多数细菌仍在5 cm至15 cm的深度范围内发现。我们的实验表明,大肠杆菌在沙质土壤中比大肠杆菌更可移动。这项研究的结果还表明,不饱和区是土壤表面和地下水微生物污染之间的重要障碍。需要进行后续研究,以完全理解调节在沙丘砂中未诱发的区域中细菌重新临床的变量。
通常10〜20mm,沿隧道的沉降相对稳定。但是,东部部分的沉降相对较大,其中大多数高于30mm,并且有沉降凹陷。理性分析:沿线西部的地面上有大量建筑设施,这会在隧道所在的层上造成额外的压力,巩固和压缩土壤层。更重要的是,额外的压力的存在等同于埋葬深度的增加,使位置层具有更高的外壳。东部沿线的地面主要位于宽敞的地区,并且没有密集的地面建筑物(例如,沿着东北沿线的地面是一个果园),周围的
很高兴介绍2024年至2034年时期Kaputa区有史以来的第一个综合发展计划。本文档是主要利益相关者的更广泛咨询和参与的结果,因此是一份文档,打算满足卡普塔居民的愿望。我感谢我们的内部和外部利益相关者在这项综合发展计划的实际制定中为他们的坦率和宝贵的贡献。在这项综合发展计划中,卡普塔区在未来10年内阐明了其方向。已经制定了该计划,以应对服务提供的需求,并特别关注为我们的地区做准备未来。综合发展计划概述了我们希望实现的战略方向和各个目标。随着我们继续努力建立更好的Kaputa,这是我们巩固我们的优势并确定发展机会的吉祥时机,这将引导该地区并增强向我们的人民提供服务。通过这项综合发展计划,我们将尝试建立一个为最脆弱的社区成员提供增强支持的地区,并将优先考虑影响大多数卡普塔居民的问题。接下来的十年中的主要野心将是建立一个地区团队,在该团队中,员工在工作中享有快乐和成功,居民能够在该地区的不同地区获得急需的服务。我们希望该综合发展计划将成为整个Kaputa区的灵感来源。通过共同的努力,我们将能够为更美好的未来做出贡献。我借此机会向所有为该计划制定的各个阶段做出贡献的人提供了感谢。我呼吁整个卡普塔地区利益相关者的持续支持使该计划的实施成功。
摘要:城市化和气候变化对雨水管理构成了关键的挑战,尤其是在迅速发展的城市中。这些城市经历了越来越不透水的表面和更激烈的降雨事件。这项研究调查了巴基斯坦拉合尔现有排水系统的有效性,这是受到快速城市化和气候变化影响的大型挑战。解决缺乏预定义的风暴模式和有限的历史降雨记录,我们采用了公认但适应能力的方法。此方法利用Log-Pearson III型(LPT-III)分布和交替的块方法(ABM)在各个返回期间创建设计射击图。本研究将雨水管理模型(SWMM)应用于2.71公里2的代表社区,以评估其排水系统的容量。此外,将地理信息系统(GISS)用于洪水风险映射的空间分析,以识别容易发生区域。结果表明,为期2年的回报期设计的当前排水系统不足。例如,一场2年的风暴产生的总洪水量为070万加仑,淹没了研究区域约60%。这项研究确定了洪水风险区,并强调了系统在处理未来,更激烈的降雨事件中的局限性。这项研究强调了迫切需要改进基础设施,以处理增加径流量的增加,例如低影响力开发实践的整合。这些基于自然的解决方案可以增强渗透,减少径流并改善水质,从而提供可持续的方法来减轻洪水风险。重要的是,这项研究表明,整合LPT-III和ABM为洪水风险评估提供了强大而适应性的方法。这种方法在数据稀缺和多样化的降雨模式可能阻碍传统风暴建模技术的发展中国家中特别有效。我们的发现表明,当前的排水系统不堪重负,一场2年的风暴超过了其容量,导致洪水泛滥,影响了该地区一半以上。LPT-III和ABM的应用,通过为数据划分区域创建更现实的设计射击图,从而改善了洪水风险评估,从而更准确地识别了容易洪水的区域。
1992 年在砂拉越的实地考察是在重要个人和组织的帮助下完成的。首先,我要衷心感谢砂拉越博物馆对我的实地研究的监督,特别是现任馆长 Peter Kedit 博士提供的实用建议和当地知识。我还要感谢其他乐于助人的博物馆工作人员,即 Tazudin Mohtar、Clement Sabang、Tuton Kaboy、Magdaline Kuih 和图书馆工作人员。砂拉越旅游协会(特别是 Rose Tan)和环境与旅游部旅游协调员 Denis Hon 提供了有关旅游的宝贵信息。我要感谢古晋的许多商业旅行社和导游,他们允许我参加 Than 长屋之旅,邀请我分享旅游餐,并分发游客调查表。我特别感谢亚洲陆上服务公司的 Ngu Ka Sen 的支持,这对我在 Nanga Stamang 的实地研究有很大帮助。
nipa sap是一种甜美的半透明饮料,起源于NIPA Palm(NYPA Fruticans)树。在砂拉越,NIPA SAP成为NIPA糖或本地称为古拉Apong的原材料。但是,NIPA SAP经历了自然发酵,从而改变了NIPA SAP的特性,包括味道,香气和质量。发酵的NIPA SAP是白色的,具有不愉快的香气和味道,这使其无法接受。因此,它不再适合制作NIPA糖。这项研究旨在确定NIPA PALM SAP从新鲜到发酵的物理化学和微生物变化。允许NIPA SAP在室温下进行自然发酵56天。在第一个星期每24小时收集样本,在随后的一周中每周一次。使用高性能液相色谱(HPLC)分析了所选的生理化学品质,而使用扩散板分析了微生物含量。新鲜的NIPA SAP显示出最高的糖(334.2±12 g/l),蔗糖作为主要糖(231.5±4.3 g/l),其次是果糖(42.1±1.2 g/L)和葡萄糖(29.7±3.2 g/L)。新鲜的NIPA SAP还具有最低的乙醇(0.08±0.03 g/L),乳酸(1.09±0.06 g/L)和乙酸(0.05±0.01 g/L)以及微生物和酵母菌浓度。后来,乙醇在第4天(9.80±0.1 g/l)开始积聚,最高峰为第21天(19.1±2.01 g/l)。微生物浓度也会改变,影响NIPA SAP的质量。由于NIPA SAP在砂拉越人民的生活方式中起着如此重要的作用,因此这项研究可以更好地了解其发酵过程的微生物学和生物化学。因此,应考虑正确处理新鲜NIPA SAP的适当计划,以确保增值产品生产的质量。
申请人代表 Bernard Ralph 先生列出了申请,并指出他的客户之前没有在同一地点举办过类似的活动。与之前举办的活动相比,此次活动的容量会更低,因此,他们认为,此次活动的举办方式会更负责任、更可控,以防止出现反对者所担心的情况。Ralph 先生强调,只有一位居民提出了反对意见,主管部门没有收到任何陈述。活动运营者必须非常认真地对待与许可证相关的商定措施和管理计划,因为不这样做将构成刑事犯罪,并损害其客户举办成功活动的声誉。申请人同意并提交了噪音管理计划、安全管理计划、活动管理计划和详细的风险评估,根据拟议的条件,这些计划必须在整个活动过程中继续使用。
2024 年 8 月 22 日 — 可预订的 Plenie Shelter。Farmittaa Trahead 的马匹。岸边钓鱼。马拖车停车场。游泳区。停车场。通往县城的船坡。
