[1] Switzer C,Moroney SE,Benner SA。将新碱基对酶促掺入DNA和RNA中。J Am Chem Soc,1989,111:8322-3 [2] Wang L,Brock A,Herberich B.扩大大肠杆菌的遗传密码。Science,2001,292:498-500 [3] Pinheiro VB,HolligerP。XNA世界:朝着复制和演变的进步合成遗传聚合物。Curr Opin Chem Biol,2012,16:245-52 [4] De Graaf AJ,Kooijman M,Hennink WE等。非天然氨基酸用于特定位点特异性蛋白质结合。Bioconjug Chem,2009,20:1281-95 [5] Schmidt M. Xenobiology:一种新的生活形式,作为最终的生物安全工具。Bioessays,2010,32:322-31 [6] Noren CJ,Anthony-Cahill SJ,Griffith MC等。一种将非天然氨基酸特异性掺入蛋白质中的一般方法。Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。 核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。 自然,1992,356:537-9 [8] Matray TJ,Kool等。 DNA中无碱性损伤的特定伴侣。 自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。 一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。 NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。 遗传编码非天然氨基酸进行细胞和神经元研究。 nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。 J am Chem Soc,2008,130:2336-43Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。自然,1992,356:537-9 [8] Matray TJ,Kool等。DNA中无碱性损伤的特定伴侣。自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。遗传编码非天然氨基酸进行细胞和神经元研究。nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。J am Chem Soc,2008,130:2336-43发现,表征和优化不自然的碱基对,用于扩展遗传字母。
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
flap 之间存在动态转换,使所需 DNA 信息有机会 与基因组的靶标链结合,之后 5' flap 会在细胞修复 的过程中被切除,经过 DNA 修复过程,最终实现基 因组信息的修改 ( 图 1 ) 。在这个过程中,融合蛋白 承担了切割目标位点非靶标链和逆转录的双重功 能,而 pegRNA 既引导 PE 识别目标位点,又包含了编辑 所需的信息。通过这 2 个组分, PE 系统实现了识 别、切割、起始逆转录的引物序列结合、逆转录等一 系列过程,并将所需 DNA 信息直接逆转录至目标 位点的断裂处 [ 26 ] 。 PE 系统的设计非常简单精巧,无 需引入 DNA 模板,也不产生双链断裂,是一种非常
http://www.biomedrxiv.org.cn/article/doi/bmr.202502.00005 此预印本(未经同行评审)的作者拥有该文稿的版权,biomedRxiv拥有永久保存权。任何人未经允许不得重复使用。
肿瘤。目前,联合疗法策略(例如免疫疗法,结合了细菌疗法,化学疗法或放射疗法,以及ICIS或肿瘤疫苗的组合)已成为旨在增强治疗效果并克服单疗法限制效果的研究热点。本文回顾了前列腺癌免疫疗法的最新研究进度,分析了其潜在机制和未来方向,并为前列腺癌患者提供了更多治疗选择。
图 4 EB 病毒部分间层蛋白结构 . A: BBRF2/BSRF1 结构 (PDB ID: 6LQO); B: BNRF1 DID-DAXX HBD-H3.3-H4 结构 (PDB ID: 5KDM); C: BKRF4 HBD-H3.3-H4-ASF1b 结构 (PDB ID: 7VCQ); D: BKRF4 HBD-H2A-H2B 结构 (PDB ID: 7VCL); E: BORF2- A3Bctd 结构 (PDB ID: 7RW6) Figure 4 Structures of presentative tegument proteins encoded by EBV. A: Structure of BBRF2/BSRF1 (PDB ID: 6LQO); B: structure of BNRF1 DID-DAXX HBD-H3.3-H4 (PDB ID: 5KDM); C: structure of BKRF4 HBD-H3.3-H4-ASF1b (PDB ID: 7VCQ); D: structure of BKRF4 HBD-H2A- H2B (PDB ID: 7VCL); E: structure of BORF2-A3Bctd (PDB ID: 7RW6)
肝细胞[J].Mol Cell Endocrinol,2007,273(1/2):6-15.[18]Olson DE,Campbell AG,Porter MH,等.肝脏胰岛素消失
脑小血管疾病本质上是阴险的,随着年龄的增长逐渐发展,最终导致患者独立性丧失。先前的研究始终证明了步态障碍与影响认知功能的神经退行性疾病之间的协会。随着成像技术的发展,近年来脑部小血管疾病对步态功能的影响(近年来被忽略的话题)引起了公众的关注。这项艺术对成像检查,发病机理,治疗以及不同类型的脑小血管疾病与步态疾病之间的相关性进行了全面综述。
CRISPR/CAS9系统不仅是基因编辑的革命性工具,而且还调节各种原核和真核生物的基因转录。在近年来,源自CRISPR/CAS9的CRISPR-DCAS9系统已用于基因成像,高通量筛选,基因调节,研究基本基因功能和表观遗传调节等许多领域。在这篇综述中,描述了CRISPR-DCAS9在激活或抑制基因转录,降低靶向效率以及梳理SGRNA与转录调节之间的内在关系,在生命科学中的应用以及进一步升级的固有关系的最新进展。
F、Plenio MB. 量子演化的纠缠和非马尔可夫性。Phys Rev Lett, 2010, 105: 050403; Breuer HP、Laine EM、Piilo J. 测量开放系统中量子过程的非马尔可夫行为程度。Phys Rev Lett, 2009, 103: 210401 9 Datta A、Shaji A、Caves CM. 量子不和谐与一个量子比特的力量。Phys Rev Lett, 2008, 100: 050502 10 Lanyon BP、Barbieri M、Almeida MP 等。无纠缠的实验量子计算。Phys Rev Lett, 2008, 101: 200501 11 Vedral V. 难以捉摸的加速源。 Found Phys, 2010, 40: 1141 – 1154 12 Shannon C E. 通信的数学理论。Bell Syst Tech J, 1948, 27: 379-423: 623 – 656 13 Groisman B, Popescu S, Winter A. 量子态中的量子、经典和总关联量。Phys Rev A, 2005, 72: 032317 14 Ferraro A, Aolita L, Cavalcanti D, et al. 几乎所有量子态都具有非经典关联。Phys Rev A, 2010, 81: 052318