●标题:反映研讨会的整体主题和愿景。●目标:1-3学习目标,这些目标简洁地强调了参与者将获得哪些教育福利。●讲座说明:3-5句子的演讲描述,解释了为什么主题引人入胜且对与会者有价值。●发言人:您可以提出潜在的演讲者或小组成员,但请在提交建议之前不要做出任何承诺。最终选择演讲者和对会议的修改是由ACMT教育委员会酌情决定的。
硅基涂层体系中应引起重视的基本研究问题是:(1)研究添加剂(如硼、锗)、水分和氧压对氧化物粘附性和粘度的影响,以便为有效减少和控制密封剂和水垢开裂提供必要的理解和数据;(2)为开发具有最佳热膨胀、应变耐受性和可塑性的双层和玻璃涂层进行裂纹管理,进行必要的分析和建模;(3)研究真实的功能梯度涂层,利用涂层的梯度和/或一系列层来控制裂纹的萌生,特别是裂纹的扩展;(4)在可能的情况下,包括测量、分析和实际建模施加应力对涂层系统的影响;(5)在二氧化硅作为离子导体的较高温度下,电解抑制通过二氧化硅水垢的传输。
Phil Town、Rule #1 Investing, Inc. 或其子公司,以及其各自的任何管理人员、雇员、代表、代理或独立承包人均不是持牌金融顾问、注册投资顾问或注册经纪交易商。他们既不提供投资或金融建议,也不提出投资推荐,也不从事交易业务。个人交易示例仅用于教育和演示目的。它们不代表任何账户中的任何头寸或持续回报,也不代表对未来收益的预期。演讲者和培训师可能有其他积极或消极的立场。Rule #1 Investing, Inc. 或其任何关联方提供的信息或意见均不构成购买或出售任何证券、期货、期权或其他金融工具的邀请或要约。
• 为人民服务的军事科学 • 空间与国防技术中的复合材料 • 增材制造在空间与国防技术中的应用 • 特殊制造工艺在国防应用中的作用 • 空间机器人技术 - 进步与挑战 • 无人驾驶飞行器在国防中的作用 • 空间应用的未来结构 • 空间与国防应用表面工程的最新进展 • 核反应堆中的材料 • 摩擦在空间与国防中的作用 • 国防应用中的储能材料 • 装甲车(战斗坦克)技术的进步及其重要性
28。Linsel Simon Mathias(在Pers。)Ludwig-Maximilians-Universitätmünchen物理学系和Arnold Sommerfeld理论物理中心(ASC)
定理:对于具有n层和12个注意力头的BERT模型,通过构造存在一组参数,以便该模型可以正确地以SimpleLogic中的任何推理问题正确解决,最多需要N - 2步的推理。
● 刺激技术发展 ● 利用小企业满足联邦研发需求 ● 培养和鼓励社会和经济弱势小企业以及 51% 由女性拥有和控制的企业参与技术创新 ● 增加私营部门对联邦研发创新的商业化,从而提高竞争力、生产力和经济增长
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
