了解原子基本参数 (FP),例如荧光产额、光电离截面和科斯特-克罗尼希跃迁概率,对涉及 X 射线荧光 (XRF) 的任何定量分析都至关重要。不同元素的大部分现有实验和理论 FP 值都是四十多年前获得的。对于某些化学元素和某些 FP,由于不存在实验或理论数据,所以列表数据完全基于插值。不幸的是,大多数列表 FP 数据的不确定性通常不可用或仅是估计的。由于这种情况肯定是可以改善的,国际 X 射线基本参数倡议 [ 1 ] 和其他组织正在努力通过采用最新技术的新实验和计算来重新审视和更新 FP 数据库。在这项工作中,钽 L 壳层基本参数,即荧光产额和科斯特-克罗尼希因子,正在通过实验重新确定。钽是微电子[ 2 , 3 ]、太阳能工业[ 4 ]、医药等领域的关键元素。另一方面,通过实验确定的 Ta-L 壳层荧光蛋白相当稀缺。大多数可用的实验数据都超过 30 年,而最常见表格[ 5 , 6 ] 的不确定性估计值仅为估计值。在这项工作中,我们应用 PTB[ 7 ] 的无参考 XRF 设备以及专用的透射和荧光测量[8] 来重新审视钽的这些参数。
1.1.1.3 本规范生效前签订建造合同的船舶应符合各船级社的规范。注:“签订建造合同”日期系指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅 IACS 程序要求 (PR) 第 29 条。
1.1.1.3 本规范生效前签订建造合同的船舶应符合各船级社的规范。注:“签订建造合同”日期系指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅 IACS 程序要求 (PR) 第 29 条。
摘要:我们对以色列埃拉特高盐度盐场池塘(盐度 280 至 290 g 1-0)底部石膏壳内发育的蓝藻和紫色细菌分层群落进行了描述。石膏壳厚 4 至 5 厘米,上部 1 至 2 厘米处栖息着富含类胡萝卜素的单细胞蓝藻(Aphanothece sp. 等),使石膏呈现橙棕色。在棕色层下面,发现了一个绿色层,主要由 Synechococcus 属的单细胞蓝藻组成,丝状 Phormidjum 型蓝藻是次要成分。在这些产氧光养生物层下面是一层红色的紫色细菌层。我们研究了石膏壳的光学特性,通过表征不同层中存在的色素并测量光谱标量使用光纤微探针测量地壳不同深度的辐射度。在地壳上部 2 毫米处,测量到的最大标量辐射度高达入射光的 200%。光谱蓝色范围(400 至 500 纳米)的光被上部棕色层中的保护性胡萝卜素(蓝黄素、海胆酮等)有效吸收。然而,光谱红色部分中大量的光穿透到绿色层,从而实现光合作用:620 和 675 纳米处约 1% 的入射辐射度到达深度为 15 毫米的绿色层,光谱红外部分中 >1% 的入射光到达深度为 20 至 23 毫米的紫色细菌。
阴影区域监测 第一个 Kilnscan 具有黄色视野,用于测量位于建筑物内部的窑炉部分的温度。可以注意到扫描仪与窑壳之间的距离仅为 4.3 米。由于 140° 视野扫描仪,实现了这一短瞄准距离限制。第二个和第三个扫描仪旨在扫描窑壳的同一部分,并特别解决沿着窑炉这一部分延伸的阴影区域问题。然后通过结合这两个扫描仪的数据重建热图像,消除阴影,从而完美地全面监测窑壳。
D-Sub 轻型后壳是保护重量和空间受限的太空应用中的连接器和电缆的关键元件。我们现在提供兼容 Haloring 的 D-Sub 轻型后壳新版本,可满足客户在需要屏蔽的应用中的需求。
摘要我们介绍了Mesogan,这是一种生成3D神经纹理的模型。通过结合生成对抗网络(stylegan)和体积神经场渲染的优势,这种新的图形原始形式代表了中尺度的出现。原始性可以用作神经反射率壳的表面;表面上方的薄体积层,其外观参数由神经网络定义。为了构建神经外壳,我们首先使用带有仔细随机傅立叶特征的stylegan生成2D特征纹理,以支持任意尺寸的纹理而无需重复伪影。我们以学习的高度功能增强了2D功能纹理,这有助于神经场渲染器从2D纹理产生体积参数。为了促进过滤,并在当前硬件的内存约束中启用端到端培训,我们使用了层次结构纹理方法,并将模型训练在3D中尺度结构的多尺度合成数据集上。我们提出了一种在艺术参数上调节Mesogan的可能方法(例如,纤维长度,链的密度,照明方向),并演示并讨论整合基于物理的渲染器。
执行摘要 砖瓦行业简介 印度是世界第二大烧结粘土砖生产国,每年生产约 2500 亿块砖。从事砖瓦生产的微型和小型企业超过 100,000 家,雇佣工人超过 1000 万人。这是一个季节性行业,一年中仅在非季风月份(通常是从 11 月到 6 月)运营 6 到 8 个月份。中型和大型企业(生产能力 > 200 万块砖/年)的烧成通常在连续窑中进行,例如固定烟囱牛槽窑或曲折窑,而小规模生产(生产能力 < 200 万块砖/年)则使用各种间歇窑,例如夹窑和下吸窑。砖瓦制造是印度最大的能源消耗型中小微型企业行业之一。据估计,每年有 3500-4500 万吨煤和生物质燃料用于烧砖。印度的制砖过程 制砖过程包括粘土混合、成型、干燥、烧成和冷却。印度砖瓦行业主要是无组织和非机械化的。除了一些机械化/半机械化单位(主要在印度南部)外,该行业主要采用手工成型方法来成型绿砖,全国 98% 的砖块都是通过手工成型生产的。从农田挖出的表层土壤以及从河流和水箱中沉积的淤泥是粘土的主要来源。干燥大多在露天阳光下进行。由于砖块在雨季无法干燥,因此该行业是季节性的。它仅在一年中的六到八个旱月(通常是从 11 月到 6 月)运营。大中型企业(生产能力 > 200 万块砖/年)通常使用连续窑,如牛沟窑(大多为固定烟囱)或之字形窑,而小规模生产(生产能力 < 200 万块砖/年)则使用各种夹具和间歇窑。燃料(主要是煤)和粘土是制造粘土砖的两种最重要原料。砖瓦行业在采购粘土方面面临问题,近年来煤和粘土的成本均大幅上涨。在微型和中小型企业中,砖瓦行业也是颗粒物和碳(气态 - CO 2 和固态 - 黑碳)排放量较大的污染源之一。因此,采取资源效率措施对该行业至关重要。然而,缺乏意识、必要的机构结构和能力以及资金成为砖瓦行业采用清洁生产技术的障碍。通过各种计划采取的举措近年来,人们对环境保护和资源保护相关问题的认识不断提高,从而促使邦和中央政府各部门制定了相关政策。环境、环境和气候变化部制定了排放标准。各邦政府制定了砖厂选址标准。能源效率局通过试点技术实施,在中小微型企业集群启动了节能项目;根据这一举措,北方邦瓦拉纳西的砖厂集群实施了之字形技术。最近,能源效率局为砖厂引入了节能企业 (E3) 认证计划,以
人类需要庇护所来保护自己免受环境条件的影响并感到安全(Aldakshe 等人,2020 年)。他们必须建造满足庇护需求的结构(Tezel 等人,2020 年)。这些建筑结构中最重要的元素是材料(Al-Hasani 等人,2023b)。在这些材料中,混凝土是第一位的(Palta 等人,2020 年),砖块是第二位的。砖是一种建筑材料,通过将粘土与水(如果需要)和沙子混合,然后在高温炉中烧制而成(Çağlar 和 Çağlar,2019 年;Al-Amara 和 Çağlar,2023 年)。通过热处理将土坯转化为建筑材料可以追溯到史前社会时期(公元前 2500-1750 年)。烧砖是一种已经使用了数千年的砌块,特别是在发现钢筋混凝土之前(Çağlar et al.,2018)。