气候变化给葡萄栽培带来了许多威胁。人们已经制定了不同的策略来减轻这些影响,从创新的葡萄园管理方法和精准葡萄栽培到培育更适应环境挑战的新品种和砧木。表观遗传学是指基因组功能的可遗传变化,不受 DNA 序列变异的影响。最近发现表观遗传记忆可以介导植物对环境的适应和适应,这为应对气候变化的植物改良提供了新的杠杆,而不会对遗传信息产生重大影响。这可以通过使用压力的表观遗传记忆和/或通过在不改变遗传信息的情况下以新的表观等位基因的形式创造表观遗传多样性来实现。事实上,葡萄藤是一种多年生嫁接克隆繁殖植物,因此具有表观遗传特异性。这些特异性需要已经在模型植物中开发的适应策略,但也提供了探索表观遗传记忆和多样性如何成为具有类似特性的植物快速适应环境的主要来源的机会。在这些策略中,使用不同类型的诱导剂进行一年一次和一年一次的植物启动可能提供有效的方式来更好地应对(非)生物胁迫。利用接穗和砧木之间的表观遗传交换和/或在基因组范围内创造非靶向表观遗传变异,或使用表观遗传编辑进行靶向变异,可能为葡萄树改良提供创新且有希望的途径,以应对气候变化带来的挑战。
(c) 不同 PTG/Cas9 载体诱导的编辑效率。(d) PTG/Cas9 系统在安留甜橙中诱导的表型。(ef) 安留甜橙定点突变的 Sanger 测序。与 WT(野生型)相比,CsPDS 的 DNA 序列中显示的是核苷酸突变。绿色序列代表 gRNA,蓝色表示 PAM 位点。删除的核苷酸以黑点表示。插入的核苷酸以红色表示。(g) 用作嫁接接穗的转基因株系。(h) 嫁接砧木的准备。(ij) 将 V 形接穗嫁接到准备好的甜橙上
园艺作物易受各种生物胁迫源的影响,包括真菌、卵菌、细菌、病毒和根结线虫。这些病原体限制了园艺作物的生长、发育、产量和质量,也限制了它们的适应性和地理分布。园艺设施中的连作模式加剧了土传疾病,严重限制了产量、质量和生产力。本文回顾了通过创新策略(包括宿主诱导基因沉默 (HIGS)、靶向易感基因和砧木嫁接应用)赋予对不同疾病耐受性的机制的最新进展,以系统地探索园艺植物疾病的抗性机制。未来的工作应该使用这些策略结合分子生物学方法成功培育抗性品种。
抽象的嫁接幼苗已成为世界许多地方的重要农业实践,用于生产和保护葫芦,免受生物和非生物胁迫的影响。盐度是埃及黄瓜的生长和生产力降低的主要非生物胁迫之一。This study aims to investigate the performance of commercial greenhouse cucumber hybrid (Hesham) grafted onto some genotypes and F1 hybrids rootstocks under salinity stress conditions (Salinity of the experimental soil and irrigation water were about 70.9 and 2.77 dS/m, respectively), at El-Anwar Farm, Cairo-Alexandria Desert Road, during summer seasons of 2020 and 2021under shade house 状况。此实验是在带有3个重复的随机完整块设计中进行的。与未移植对照相比,该实验包含14种处理,除7种F1杂交砧木外,还包括六种基因型rootstocks。结果表明,与未嫁接的植物相比,两个季节的植物高度,叶子面积,水果长度,果实长度,果实长度,果实长度,水果直径,产量和光合作用的植物高度,叶子面积,果实长度,果实长度和光合作用相比,与未枝的植物相比,植物的身高,果实重量,果实长度和光合作用可显着改善。 534556和siceraria pi 554556 x lagenaria siceraria pi 491365茎长度比第一个季节的非移植植物更大。在两个季节中嫁接到C. Maxima X C. Maxima X C. Maxima X C. Maxima X C. Moschata rootstock中,碳水化合物含量的最高值是在两个季节中估计的,而在两个季节中嫁接到Kalabsha rootstock上的黄瓜叶中估计了最高的脯氨酸含量。关键字:cucumis sativus,盐度压力,砧木,
30970 改良的迈耶柠檬杂交种。即使在北方地区,一年四季都可以享用新鲜的柑橘!柠檬和橘子的杂交品种,也是最容易种植的柑橘之一,能够全年开花结果。芳香的白色花朵之后是大而橙黄色的果实,非常适合榨汁、烹饪和烘焙。嫁接到耐寒的矮化砧木上,树木很少超过 5 英尺高,因此很容易将它们带入室内。在春季、夏季和秋季,在至少有半天阳光的地方享受它。在深秋,在第一次严重霜冻之前将其移到室内光线充足的房间。产量高,自花授粉,1 至 2 年内结果。适合在 5 至 10 加仑的容器中种植。加仑盆。9-10 区。无法运送至阿拉斯加州、阿拉巴马州、亚利桑那州、加利福尼亚州、佛罗里达州、夏威夷州和德克萨斯州。每株 39.95 美元;3 株以上每株 36.95 美元。
讨论,局限性和未来研究的途径该模型的准确性取决于输入数据,尤其是SWHC估计和草覆盖效果。SWHC主要取决于固有的土壤特征,例如纹理和粗元素的百分比,这超出了种植者的控制。然而,这也取决于葡萄树生根深度,生产者可以通过适当的植入土壤制备或使用剧烈的砧木来修改。草皮的百分比是所研究的草皮最简单的适应性参数。种植者可以每年甚至在一个季节内调整它,具体取决于复古的气候条件,从而对高度调节的葡萄道水缺乏作用。这种建模练习没有考虑到这种管理实践,也没有选择草覆盖物种及其干燥,所有这些都会显着影响土壤蒸发并覆盖作物蒸散量,从而弥补葡萄藤缺水的水平。
• 您是否同意使用经加拿大葡萄藤认证网络 (CGCN) 认证苗圃或国际同等认证(如果植物材料来自国际)的认证植物材料(葡萄藤和砧木,或田间嫁接的葡萄藤)?Y/N • 为什么要重新种植?树干疾病 Y/N 病毒 Y/N 寒害 Y/N 火灾 Y/N 其他 Y/N • 您是否打算在同一块葡萄园种植同一品种?Y/N • 如果是,您是否承诺实施新的风险管理策略来应对场地挑战?(例如:种植认证植物材料、冬季覆盖葡萄藤)请注意,您的回答将接受审计。Y/N • 您的种植项目支持五种最畅销的葡萄酒风格中的哪一种(链接至 Terroir Consulting 的附录 1:畅销葡萄酒风格和建议品种)?请注意,品种选择需要接受审计。琼瑶浆不提供资金。葡萄酒风格 1 (主力白葡萄酒) 是/否 葡萄酒风格 2 - (淡红葡萄酒/桃红葡萄酒) 是/否 葡萄酒风格 3 - (传统/罐装起泡酒) 是/否 葡萄酒风格 4 - (超优质) 是/否 葡萄酒风格 5 - (优质实验酒) 是/否
柑橘是全球最主要的水果作物之一。实施有效可靠的育种计划对于满足日益增长的对果实产量和质量的要求以及应对快速传播的疾病的负面影响至关重要。由于柑橘生物学固有因素,例如其幼年期较长和生殖阶段复杂,有时表现出不育、自交不亲和、单性结实或多胚,传统方法既耗时又难以应用。此外,栽培或野生柑橘基因型缺乏某些理想性状。所有这些特征对于整合理想性状都具有挑战性。在这方面,基因工程技术提供了一系列替代方法,可以克服传统育种计划的困难。本综述详细概述了目前用于开发转基因柑橘的策略。我们描述了所使用的基因型品种的不同方面,包括优良品种或广泛使用的接穗和砧木。此外,我们还讨论了通过农杆菌、常规物理方法和磁转染进行的柑橘遗传转化程序的技术方面。最后,我们描述了考虑幼年和成熟组织、原生质体分离等的外植体选择。我们还讨论了改进体外再生过程的当前方案和新方法,这是柑橘遗传转化的重要瓶颈。本综述还探讨了应用于柑橘物种的替代性新兴转化策略,例如瞬时和组织局部转化。我们还讨论了新的育种技术,包括同源、内源和通过成簇的规律间隔的短回文重复序列 (CRISPR) 进行基因组编辑。其他
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及再生完全编辑的植物。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,植物从原生质体再生能力较差,阻碍了其用于基因组编辑的实施。在这里,我们报告了一种从来自多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终再生为植物。该方案成功应用于酿酒葡萄和鲜食葡萄(Vitis vinifera)品种,以及葡萄砧木和葡萄树野生近缘种 Vitis arizonica。此外,通过用 CRISPR-质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及完全编辑的植物的再生。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,原生质体再生植物的能力较差,阻碍了其在基因组编辑中的应用。在这里,我们报告了一种从多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终生成植物。该方案在酿酒葡萄和鲜食葡萄 (Vitis vinifera) 品种以及葡萄砧木和葡萄野生近缘种 Vitis arizonica 中均成功发挥作用。此外,通过用 CRISPR 质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。