“间隙液位测量”方法(该术语在《健康与安全法规》第 25290.1 节中使用)或“静水压力监测”方法是指一种释放检测方法,该方法持续监测地下储罐充满液体的间隙空间内的液位。该术语仅包括能够在储存的危险物质释放到环境中之前检测到受监测地下储罐组件的主容器或次容器破裂的释放检测系统。为此,间隙空间中的液体应保持在高于受监测组件内的工作压力的压力下。例如,可以通过充分升高液体储存器或对充满液体的间隙加压来实现此压力。静水压力监测方法应满足第 2643(f) 节的要求。
损坏或裂开的构件、屋顶检查和风损修复。修复发现的差异,例如给门充电、拆除和更换损坏的构件;修剪粘住的门窗;拆除和更换破损、裂开或腐烂的结构构件;更换有故障的门锁,使用油灰和玻璃尖头更换破损或破裂的玻璃等。在建筑物内安装门、墙和天花板等。拆除和更换松散和磨损的地砖。驾驶政府车辆完成日常任务。更换建筑物中的荧光灯管和灯泡。检查建筑物和结构是否涂漆表面损坏。为已修复并更换新材料的建筑物和结构的窗框、门、墙壁、装饰、台阶和任何其他表面涂漆。2.协助横滨分部工程师内的其他车间在需要时包括东京支队。
上下文密码学是许多安全设备的核心,以确保通信,程序和数据的机密性,完整性和真实性。当前不对称加密的安全性依赖于易于使用量子计算机破裂的问题。实际上,量子计算的真正威胁预计将在几十年内运行。然而,通过国家标准技术研究所(NIST)冲动,社区决定采用更强大的加密术,有能力从古典和量子计算机发动攻击。此密码学称为量词后加密(也称为量子安全密码学或抗量子的密码学)。PQ-TLS是一个为期5年的研究项目,由法国国家研究机构(ANR)和法国2030年策略在优先研究计划和设备(PEPR)的框架下进行。PQ-TLS旨在为后量子加密的创新和有效的方案开发创新和有效的方案。
客观的大脑动静脉畸形(AVM)在神经外科中提出了重大挑战,需要逐渐计划和执行。在这项研究中,作者旨在评估混合现实(MXR)的功效,即虚拟现实(VR)的协同应用(VR)和增强现实(AR)在AVM的手术管理中。方法对10名在2021年至2023年之间进行AVM切除的患者进行了回顾性审查。术前计划使用了特定于患者的360°VR模型,而术中指南则使用AR标记来靶向干扰动脉喂食器。数据分析了由Spetzler-Martin(SM)分层的手术持续时间,失血和术后外的数据,并补充了Spetzler-Martin(SPED-SM)等级。导致10例脑AVM患者,MXR显着促进了21种动脉喂食器的鉴定,其中包括具有挑战性的深馈球。MXR辅助手术表现出有效的鉴定和断开动脉喂食器的连接,从而有助于精确的AVM切除。平均手术持续时间约为5小时11分钟,术中平均失血为507.5 mL。基于SM和补充SUPP-SM等级观察到手术持续时间和失血的统计学显着变化。两名患者术后神经系统缺陷恶化,强调了AVM手术的固有风险。在破裂的患者和AVM未破裂的患者之间住院的明显差异,特别是对于SM III级,突出了破裂状态对术后恢复的显着影响。在这项研究中得出结论,作者使用MXR进行了新的范式来描述AVM的手术干预。使用3D VR进行术前计划和AR进行术中指导,他们实现了无与伦比的精确性和效率,可在靶向深动脉喂食器方面。虽然结果是有希望的,但需要大量研究来进一步验证这种方法。
摘要 脑动静脉畸形 (bAVM) 发病率低,但总年出血率为 2-4%,且破裂时具有较高的发病率和死亡率。治疗方案包括显微手术切除、立体定向放射外科和栓塞治疗,可单独进行或以各种组合进行。由于每种病例的风险各不相同,因此对于治疗指征和处理病例的方法尚无共识,尤其是对于未破裂的病例。尽管受到了高度批评,bAVM 的血管内治疗在安全性和效率方面一直存在争议,尤其是在 ARUBA 结果出现之后。从那时起,血管内 bAVM 治疗取得了许多进展,不仅在设备和材料方面,而且在技术方面也是如此,例如经静脉栓塞的改进,以及最近引入的治愈性多塞流控制技术。本综述描述并讨论了先进的栓塞技术。
摘要:伴有蛛网膜下腔出血的颅内动脉瘤发病率和死亡率很高。检测动脉瘤、识别破裂的危险因素和预测动脉瘤的治疗反应以指导临床干预至关重要。人工智能因其在基于图像的任务中的出色表现而受到了全世界的关注。人工智能在一系列临床环境中作为医生的辅助手段,大大提高了诊断准确性,同时减少了医生的工作量。基于使用深度学习的 MRA 和 CTA 的动脉瘤计算机辅助诊断系统已经过评估,并报告了出色的性能。随着机器学习方法的实施,人工智能还被用于自动形态学计算、破裂风险分层和结果预测,这些方法已表现出增量价值。本综述总结了人工智能在动脉瘤管理(包括检测和预测)方面的最新进展。简要讨论了人工智能临床应用的挑战和未来方向。
现代城市的经济繁荣建立在地上和地下的复杂基础设施网络之上。饮用水是公共卫生和经济福祉的重要组成部分,它通过复杂的地下管道分配系统网络输送到水龙头。由于大多数基础设施都在地下,因此人们看不到它们,而且经常被忽视。关于水管破裂的经验数据有助于公用事业公司进行维修和更换决策,以便以可承受的价格向客户提供干净的饮用水。本报告记录了美国和加拿大公用事业公司的水管破裂和运行特性的调查结果。犹他州立大学大约六年前进行了一项类似的调查,并于 2012 年发表(Folkman,2012 年)。这份 2018 年的报告引用了之前的研究,以比较和检查随时间的变化,并讨论了水管破裂数据在水资产管理规划中的重要性。
慢性身体危害,例如对员工在炎热的温度下运行,大雨,海平面上升和水压力的热压力可能对我们的操作程序造成风险。我们的运营目前最容易受到热应力,因为我们的大多数收集操作都发生在户外或气候控制选择有限的地区。为了应对这些风险,我们为员工和经理制定了政策和程序,以减轻高温期间的热量(和冷)压力的风险。例如,这些政策提供了有关随着温度升高的水合频率和持续时间破裂的指示。我们继续评估慢性危害如何影响我们的设施的绩效以及员工的健康和安全,并采用或调整适当的政策和程序,以减轻新危害和不断变化的危害的影响。我们还开始并计划继续对我们的关键操作进行方案分析,这些操作容易受到慢性物理风险的影响,以估算我们各种业务的任何增量资本和运营成本的影响。此分析的示例在表2稍后提供了风险2。
肌腱破裂的风险,其他肌腱随着年龄的增长而增加。在高负载环境中起作用的组织的这种伤害通常被认为会随着变化的结果而愈合。但是,在许多情况下,康复并不能带来良好的结果,并且患者无法恢复以前参与包括运动在内的活跃生活活动的水平。在过去的几年中,使用蛋白质组学方法和其他生物学技术,有报道似乎鉴定出愈合中良好结果的生物标志物,而其他人则在受伤后为期1年使用经过验证的标准来确定良好的结果。本综述将讨论这些最近发现的一些及其对改善结缔组织损伤后结果的潜在影响,以及对未来临床研究和临床试验的影响,目的是评估特定干预措施对愈合过程的影响,并将重点放在重点上,而不仅仅是对修复的重点。
摘要。量子密钥分布(QKD)是一种基于量子力学基本原理,例如海森伯格的不确定性原理和无键值理论。QKD的用法警告了任何攻击尝试的合法交流方,这是最有趣的安全参数。因此,QKD提供了无条件的安全通信方法,并支持强大的加密方案。经典通信与QKD之间的组合创建了一种称为Semi Quantum键分布SQKD的新技术。不幸的是,SQKD提高了方案的复杂性,并且需要两个步骤来进行密码,争夺和加密。在本文中,基于QKD提出了增强图像加密算法,该算法消除了SQKD的大多数缺点。所提出的算法比其他加密方案更简单,因为它仅根据生成的秘密键的功率和随机性来利用一个加密步骤,这减少了破裂的机会。通过数值模拟验证了所提出的算法的正确性和效率。