碳化硅 (SiC) 具有独特的电子和热特性,非常适合用于先进的高功率和高频半导体器件,其工作性能远远超出了硅或砷化镓器件的能力。基于 SiC 的技术的主要优势包括降低开关损耗、提高功率密度、改善散热和增加带宽能力。在系统层面,这可以实现高度紧凑的解决方案,大大提高能源效率并降低成本。目前和预计采用 SiC 技术的商业应用名单正在迅速增加,包括开关电源、绿色(太阳能和风车)能源发电逆变器、工业电机驱动器、HEV 和 EV 汽车、智能电网电源切换和无线通信基站。
开发了一种简单、高效的模拟器,用于预测光伏能的产生及其在锂离子电池中的存储,该模拟器适用于四翼自主无人机,机翼上覆盖有基于薄膜砷化镓光伏电池(III-V)的太阳能电池板。该模拟器可以预测太阳能电池板产生的有效光伏功率以及无人机飞行时的电池组电压。辐照度、太阳倾斜角和无人机欧拉角等飞行参数被视为输入参数。测得的光伏功率和电池组电压与模拟值高度一致,这使得 XSun 公司可以实际使用。这项参数研究显示了气候和地理条件对无人机自主性的影响。在晴天最佳天气条件下,无人机飞行时间可持续 12 小时。
Academia.edu 使用 Cookie 为用户提供个性化内容、定制广告和改进的体验。使用该网站即表示您同意他们通过 Cookie 收集信息。有关更多详细信息,请查看他们的隐私政策。半导体材料的本征载流子浓度可以使用特定公式计算。这涉及到与材料相关的系数、开尔文温度、带隙能量、玻尔兹曼常数以及砷化镓或锗特定常数等参数。《微电子学:电路分析与设计》是一本针对本科电气和计算机工程专业学生的教科书。它侧重于电路分析和设计,涵盖模拟和数字电子学。本书旨在通过清晰的写作和实用的教学法对学生友好。对于第四版,它包括更新和修订,以灵活覆盖运算放大器。
光耦合器和变压器通常用于医疗系统隔离电路,其缺陷在设计界众所周知。光耦合器速度慢,且性能随温度和设备使用年限变化很大。它们是单端设备,因此共模瞬态抗扰度 (CMTI) 较差。此外,光耦合器采用砷化镓 (GaAs) 工艺制造,具有固有磨损机制,在高温和/或 LED 电流升高时会导致 LED 发射永久减少。这种性能下降会降低光耦合器的可靠性、性能和使用寿命。虽然变压器比光耦合器速度更快、可靠性更高,但它们无法传递直流和低频信号,从而限制了系统时序(例如导通时间和占空比)。变压器也往往体积较大、功率效率低,并且通常需要额外的外部元件来复位磁芯。
基于氮化镓 (GaN) 的高电子迁移率晶体管 (HEMT) 技术正在彻底改变现代国防射频和电子战系统。该技术能够以高线性度和高效率在高频下提供高功率。由于这些优势,它被广泛应用于雷达、卫星通信和军事地面通信等各种应用中。基于 GaN 的 HEMT 技术比现有的砷化镓 (GaAs) 单片微波集成电路 (MMIC) 具有显著优势,尤其是在射频功率应用方面。这主要是因为 GaN 器件具有非常高的击穿场,因此能够在更高的电压下工作。此外,GaN 器件的阻抗要高得多,因此在射频功率放大器集成电路中对匹配网络的要求就更低了。总体而言,与竞争对手的射频相比,GaN 技术可以将射频 IC 的尺寸缩小十倍甚至更高
摘要:金属卤化物钙钛矿 (MHP) 将非凡的光电特性与半导体同类产品所不具备的化学和机械特性相结合。例如,它们表现出与单晶砷化镓相当的光电特性,但形成能却接近于零。MHP 的晶格能较小,这意味着它们在接近有机材料的标准条件下经历了丰富多样的多态性。MHP 还表现出与最先进的电池电极一样高的离子传输率。金属卤化物钙钛矿最广泛的应用(例如光伏和固态照明)通常将低形成能、多态性和高离子传输视为应消除的麻烦。在这里,我们通过将这些特性与其他技术相关的半导体进行比较来全面了解这些特性,以强调这种特性组合对于半导体的独特性,并说明如何在新兴应用中利用这些特性。M
半导体量子点中电子自旋量子比特的相干性主要受到低频噪声的影响。在过去十年中,人们一直致力于通过材料工程来减轻这种噪声,从而大大延长了空闲量子比特的自旋失相时间。然而,人们对自旋操纵过程中环境噪声的作用(决定控制保真度)了解甚少。我们展示了一个电子自旋量子比特,其驱动演化中的相干性受到高频电荷噪声的限制,而不是任何半导体器件固有的准静态噪声。我们采用反馈控制技术来主动抑制后者,证明了砷化镓量子点中 π 翻转门保真度高达 99 . 04 0 . 23%。我们表明,驱动演化的相干性受到 Rabi 频率下的纵向噪声的限制,其频谱类似于同位素纯化硅量子比特中观察到的 1 =f 噪声。
单电子量子光学在量子计量中的潜力和实用性:目前,没有足够的实验数据来确定不同单电子量子光学技术的局限性和优势。在本项目中,将仔细研究不同技术在计量中的应用。结果用于按需单电子量子光学传感和状态层析成像的半导体器件组件该项目将开发优化和新组件,以在广泛的电子激发能量(10 µeV – 100 meV)和两种材料系统(传统半导体砷化镓和有前景的新材料石墨烯)中实现基于单电子波包的计量。现有的按需单电子波包源设计和控制方案将得到改进,以应用于传感和状态层析成像。将开发用于在不同能量范围内检测单波包的器件组件。不同的设备组件将集成到单电子波包量子电路中,用于传感和断层扫描。
摘要:几十年来,质子辐照实验一直被用作研究多种材料辐射效应的替代方法。质子加速器的丰富性和可及性使这种方法便于进行加速辐射老化研究。然而,开发具有更高辐射稳定性的新材料需要大量的模型材料、测试样品,并非常有效地利用加速器光束时间。因此,最佳束流或粒子通量的问题至关重要,需要充分了解。在这项工作中,我们使用 5 MeV 质子在砷化镓样品中引入位移损伤,并使用了广泛的通量值。正电子湮没寿命谱用于定量评估辐射诱导的存活空位的浓度。结果表明,质子通量在 10 11 和 10 12 cm − 2 .s − 1 之间会导致 GaAs 半导体材料中产生类似的单空位浓度,而通量进一步增加会导致该浓度急剧下降。
摘要:平面纳米光子结构能够实现嵌入量子点的宽带、近乎统一的辐射耦合,从而实现理想的单光子源。电荷噪声限制了单光子源的效率和相干性,从而导致辐射光谱变宽。我们报告了通过在包含嵌入 ap - i - n 二极管的量子点的砷化镓膜中制造光子晶体波导来抑制噪声的方法。波导附近的局部电接触可最大限度地减少漏电流,并允许快速电控制(≈ 4 MHz 带宽)量子点谐振。耦合到光子晶体波导的 51 个量子点的谐振线宽测量在 6 nm 宽的辐射波长范围内表现出接近变换极限的辐射。重要的是,局部电接触允许在同一芯片上独立调谐多个量子点,这与变换极限辐射一起成为实现基于多发射器的量子信息处理的关键组成部分。关键词:光子晶体波导、量子点、单光子、共振光谱、纳米光子学、半导体异质结构