摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
相干技术目前正在深入讨论短距离内的光学互连。本文报告了先前工作的进度,该工作分析了从C-到O带光学方面的好处,以实现数字信号处理。在这里,我们研究了将连贯的方法适应已建立的数据中心互连技术(PSM4)的可行性。这种类似PSM4的实现带来了对激光漂移的弹性大大提高的好处,从而减少或消除了对温度稳定激光器的需求,这通常假定是相干收发器的需求。分析取决于SIGE光子BICMOS技术中相干接收器的先前实验实现的部分模拟参数。此外,我们还利用了有关在20 nm波长窗口上优化O-带2D光栅耦合器在效率和低极化依赖性方面的最新结果。我们将这些耦合器确定为启用类似于PSM4的实现的构建块。©2023作者。代表日本应用物理学会出版,由IOP Publishing Ltd
简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
摘要:在开发高敏感,硬质和健壮的探测器2的过程中,出现了非常浅的无定形硼基结晶硅1异质结,用于低渗透性深度辐射,例如紫外线光光子,例如紫外线光子和低增强电子3(低于1 KEV)(1 KEV)。多年来,人们相信,通过N型晶体硅在N型晶体硅上的化学4蒸气沉积产生的连接是浅的P-N结,但5尽管实验结果无法提供这样的结论证据。直到最近,基于6个量子力学的建模才揭示了该新交界处的独特性质和形成机制7。在这里,我们回顾了理解8 A-B/C-SI界面的启动和历史(此后称为“硼 - 硅交界处”),以及它对9微电学行业的重要性,随后是科学上的新连接感。未来的10个发展和可能的研究方向也将讨论。11
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。
必须充分利用它们的物理特性并成功实现器件,例如各种成功的 III-V 半导体器件 40,41 ——最终目标是外延和单晶生长。Sb2Te3(以及其他拓扑绝缘体,如 Bi2Te3 和 Bi2Se3)的外延膜已通过分子束外延工艺直接生长,29,30 该技术在批量生产中显示出其局限性。另一方面,化学气相沉积技术存在形态控制不佳的问题,我们专门研究了 MOCVD 在这方面的研究。 TI 生长中常用的衬底,例如 Si(100)、Si(111) 和 Al 2 O 3 (0001),与 Sb 2 Te 3 (以及一般的 TI) 存在明显的晶格失配,因此在存在旋转畴的情况下,会生长为取向性较差的多晶层 23,32 – 34 ,只有少数例外 42,43
致谢 本研究部分由伯克利负电容晶体管中心 (BCNCT)、ASCENT(联合大学微电子计划 (JUMP) 的六个中心之一)、DARPA 赞助的半导体研究公司 (SRC) 项目以及 DARPA T-MUSIC 项目资助。本研究使用了先进光子源的资源,先进光子源是美国能源部 (DOE) 科学办公室用户设施,由阿贡国家实验室为能源部科学办公室运营,合同编号为 DE-AC02-06CH11357。本研究使用了先进光源的资源,先进光源是美国能源部科学办公室用户设施,合同编号为 DE-AC02-05CH11231。斯坦福同步辐射光源、SLAC 国家加速器实验室的使用由美国能源部、科学办公室、基础能源科学办公室资助,合同编号为 DE-AC02-76SF00515。电子显微镜检查在劳伦斯伯克利国家实验室 (LBNL) 分子铸造厂进行,由美国能源部基础能源科学办公室科学办公室 (DE-AC02-05CH11231) 提供支持。JC 和 RdR 感谢美国能源部颁发的总统早期科学家和工程师职业奖 (PECASE) 的额外支持。作者贡献薄膜合成由 SSC、GK 和 DK 完成;电子显微镜检查分别由 RdR 和 S.-LH 在 JC 和 RR 的监督下完成,分析由 L.-CW 在 SS 的监督下完成;扫描探针显微镜由 SSC 和 NS 完成;干涉位移传感器测量由 RW 和 RP 完成和开发;扫描电容显微镜由 HZ 完成;X 射线结构表征由 SSC、NS 和 MM 在 AM 和 EK 的监督下完成;X 射线光谱由 SSC 在 RC、PS 和 EA 的监督下完成;二次谐波生成由 JX 在 XZ 的监督下进行;电气测量由 SSC、NS 和 AD 进行;SSC 和 SS 共同撰写了手稿。SS 监督了这项研究。所有作者都参与了讨论并对手稿发表了评论。利益竞争 作者声明不存在利益竞争。
在高电阻率 200 mm <111> Si 上采用 Cu 大马士革 BEOL 工艺开发与 Si 代工厂兼容的高性能 ≤0.25 µm 栅极 GaN-on-Si MMIC 工艺 Jeffrey LaRoche 1 、Kelly Ip 1 、Theodore Kennedy 1 、Lovelace Soirez 2 、William J. Davis 1 、John P. Bettencourt 1 、Doug Guenther 2 、Gabe Gebara 2 、Tina Trimble 2 和 Thomas Kazior 1 1 Raytheon IDS Microelectronics,362 Lowell St.,Andover,MA 01810 电子邮件:jeffrey_r_laroche@raytheon.com 电话:(512)-952-2927 2 Novati Technologies, Inc.,2706 Montopolis Drive,Austin,TX 78741 关键词:GaN、HEMT、硅、MBE、大马士革、200 mm 摘要 雷神公司正在开发一种 200 mm GaN on Si MMIC 工艺,该工艺适用于独立的高频 MMIC 应用,以及与 Si CMOS、SiGe BiCMOS 和其他 III-V 族的异质集成。在之前的 100 mm 和 200 mm GaN-on-Si 工作 [1-5] 的基础上,这项工作报告了在完全集成的 MMIC 方面取得的进展,以及在 200 mm 直径的 Si 晶片上实现世界上第一个 X 波段 GaN 0.25 µm 功率晶体管。这种 GaN-on-Si HEMT 在 V d = 28 V 时可提供 4.7 W/mm 的功率和 9 dB 的增益,PAE 为 49%。晶圆由商业 CMOS 代工厂 Novati Technologies 制造,采用完全减成、无金、类硅的制造方法。简介 在过去十年中,氮化镓 (GaN) 在电力电子以及高功率密度和高线性度 RF 应用中引起了广泛关注。很显然,200 mm 硅基 GaN 晶圆的大规模商业化生产将由电力电子应用推动。然而,随着这些应用开始填充 200 mm 代工厂,高性能硅基 GaN RF MMIC 应用将自然跟进,并利用大直径晶圆和背景晶圆体积来降低 RF IC 的成本。除了在 200 mm 晶圆上制造的硅基 GaN MMIC 的成本优势之外,与芯片到晶圆方法相比,大直径晶圆制造还为 GaN HEMT 与硅 CMOS 的异质集成(以实现附加功能)提供了优势。虽然与芯片到晶圆集成兼容,但 200 毫米 GaN IC 与 200 毫米 CMOS 的晶圆到晶圆异质集成在缩短互连长度和提高高密度、高性能 IC 产量方面更有前景。为了促进未来成本、产量和功能的改进,雷神公司正在高电阻率 200 上开发亚微米(≤0.25 µm 栅极)GaN-on-Si MMIC 工艺
研究了 C54 Ti(Si, -,Ge,,) 薄膜与 Si, -XGe, 衬底接触时的稳定性。C54 Ti(Si, -,Ge,,j) 薄膜由 Ti-Sii-,Ge, 固相金属化反应形成。结果表明,最初形成的 C54 Ti(Si, -,,Ge,,) 的 Ge 指数 y 与 Si, -XGeX 衬底的 Ge 指数 x 大致相同(即 yx)。C54 钛锗硅化物形成后,Si, -XGeX 衬底中的 Si 和 Ge 继续扩散到 C54 层中,大概是通过晶格和晶粒边界扩散。扩散到 C54 晶格中的部分 Si 取代了 C54 晶格上的 Ge,C54 Ti(Si, -,GeJZ 的 Ge 指数降低(即 yx)。这种偏析和沉淀增强了C54钛锗硅化物薄膜的团聚(即较低的团聚温度)。观察到可以使用快速热退火技术来减少退火时间并导致Ge偏析的减少。0 199.S美国物理学会。
