沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
模式识别算法通常用于简化亚原子物理实验中轨道重建的挑战性和必要步骤。在歧视相关相互作用的帮助下,模式识别旨在通过隔离感兴趣的信号来加速轨道重建。在高碰撞率实验中,这种算法对于确定是否保留或从给定相互作用中保留或丢弃信息至关重要,甚至在数据传输到磁带之前。随着数据速率,检测器的解决,噪声和效率低下的增加,模式识别在计算上变得更具挑战性,激发了更高效率算法和技术的发展。量子关联记忆是一种方法,旨在利用量子机械现象以获得学习能力的优势,或者可以存储和准确召回的模式数量。在这里,我们研究基于量子退火的量子关联记忆,并将其应用于粒子轨道分类。我们专注于基于量子关联记忆模型(QAMM)召回和量子内容 - 可调地理内存(QCAM)召回的歧视模型。我们使用D-Wave 2000Q处理器作为测试台将这些方法的分类性能表征为函数检测器分辨率,模式库的大小和效率低下。使用溶液状态能量和分类标签嵌入了溶液状态中的歧视标准。我们发现,基于能量的QAMM分类在较小的模式密度和低探测器效率低下的状态下表现良好。相比之下,基于州的QCAM可实现相当高的准确性回忆,以实现大模式密度和对各种检测器噪声源的最大回忆精度的鲁棒性。