摘要在这项研究中,聚(乙烯 - 乙烯基乙酸酯)/介孔二氧化硅EVA/SBA-15纳米复合材料,其中含有0.5、1.5和2.5 wt%的不官能化和功能化的SBA-15,由熔体混合器中的熔体混合在内部混合器中制备。介孔二氧化硅是通过溶胶 - 凝胶法合成的,并通过六烷基三甲氧基硅烷(HDTMS)进行了修饰。进行了几种特征;包括傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM),差异扫描量热法(DSC),热重分析(TGA),机械支撑物,动态机械分析(DMA)和介电研究,以表征精心化材料的物理学性质的表征。结果揭示了FTIR和SEM确定的介孔二氧化硅的成功合成和功能化。纳米复合材料的结晶度降低,弹性模量随介孔二氧化硅的掺入而增加。拉伸特性的测量表明,与纯EVA相比,纳米复合含量1.5 wt%F-SBA-15的拉伸强度为17.2%。DMA分析验证了EVA/SBA-15样品的机械性能的改善。 显示的SEM图像DMA分析验证了EVA/SBA-15样品的机械性能的改善。显示的SEM图像
摘要:制造密集包装的高位(HAR)垂直半导体纳米结构的强大过程非常重要,可用于微电子,储能和转换。制造这些纳米结构的主要挑战之一是模式崩溃,这是毛细管在制造过程中使用的许多基于溶液的过程造成的损害。在这里,使用一系列垂直硅(SI)纳米圆柱作为测试结构,我们证明,通过溶液相沉积方法可以大大降低图案崩溃,以用自组装的单层(SAM)涂上纳米柱。作为模式崩溃的主要原因是纳米圆柱之间的牢固粘附,我们系统地评估了具有不同表面能量成分不同的SAM,并且表面之间识别的H键构成的H键对粘附具有最大的贡献。解决方案相沉积方法的优点是可以在任何干燥步骤之前实现,这会导致模式塌陷。此外,在干燥后,可以在下一个制造步骤之前使用温和的空气治疗轻松去除这些SAM,从而将干净的纳米表面留在后面。因此,我们的方法提供了一种可轻松和有效的方法,以防止微型和纳米制动过程中干燥引起的模式塌陷。关键字:高敏感纳米结构,图案崩溃,毛细管力,硅烷,自组装单层
摘要:纳米颗粒(NPS)引起无菌炎症,但潜在的信号通路知之甚少。在这里,我们报告说,人类单核细胞特别容易受到非晶二氧化硅NP的影响,这是通过基于飞行时间(CyTOF)的细胞仪对单细胞基于外周血单核细胞的分析,而NPS的硅烷修饰可减轻其毒性。使用人THP-1细胞作为模型,我们通过纳米级离子质谱法(Nanosims)观察到了二氧化硅NP的细胞内在化,并通过透射电子显微镜证实了这一点。脂质液滴积累也在暴露的细胞中注意到。此外,飞行时间次级离子质谱法(TOF-SIMS)揭示了质膜脂质的特定变化,包括硅胶NP暴露细胞中的磷脂酰胆碱(PC),随后的研究表明,溶血磷脂酰胆碱(LPC)的信号是易溶性的,这表明该信号的流动性是在配体。此外,我们发现硅胶在单核细胞中引起NLRP3炎性体激活,而细胞死亡通过非凋亡,脂质过氧化依赖性机制转化。一起,这些数据进一步了解了我们对无菌炎症机制的理解。关键词:细胞死亡,炎症体,质谱法,单核细胞,二氧化硅纳米颗粒I
在使用溶剂输注加工(SIP)F.A.Aziz和M.M. salleh 3优化杜里奥·齐金斯(Durio Zibethinus)(榴莲)纤维增强复合材料作为汽车皮肤材料J.C.S. Aguilar和C.P. Lawagon 11自然杂交增强对UPE复合W.N. 机械性能的影响 Alrawie,Z.N.R. Alraziqi和Q.A. HAMAD 29通过用不同的硅烷偶联剂J.I. Abdulhameed,A.H。Ali和I.H. kara 39个人保护多层装甲的数值和实验研究A.Ehsan,A.O。 Samarmad和A.F. hamzah 47硬度和干燥滑动磨损的表征功能分级的材料,采用离心a.m. Abdulmajeed和A.F. hamzah 57填充物和纤维类型对身体装甲复合材料的行为的影响。 Alhaddad,J.J。 Dawood和F.M. 穆罕默德69玻璃纤维和添加剂高岭土的聚苯乙烯加固的增强机械,热和介电特性。 Kareem,M.A.I。 Alqadoori和M.M. isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。 Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Aziz和M.M.salleh 3优化杜里奥·齐金斯(Durio Zibethinus)(榴莲)纤维增强复合材料作为汽车皮肤材料J.C.S.Aguilar和C.P.Lawagon 11自然杂交增强对UPE复合W.N.Alrawie,Z.N.R. Alraziqi和Q.A. HAMAD 29通过用不同的硅烷偶联剂J.I. Abdulhameed,A.H。Ali和I.H. kara 39个人保护多层装甲的数值和实验研究A.Ehsan,A.O。 Samarmad和A.F. hamzah 47硬度和干燥滑动磨损的表征功能分级的材料,采用离心a.m. Abdulmajeed和A.F. hamzah 57填充物和纤维类型对身体装甲复合材料的行为的影响。 Alhaddad,J.J。 Dawood和F.M. 穆罕默德69玻璃纤维和添加剂高岭土的聚苯乙烯加固的增强机械,热和介电特性。 Kareem,M.A.I。 Alqadoori和M.M. isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。 Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Alrawie,Z.N.R.Alraziqi和Q.A. HAMAD 29通过用不同的硅烷偶联剂J.I. Abdulhameed,A.H。Ali和I.H. kara 39个人保护多层装甲的数值和实验研究A.Ehsan,A.O。 Samarmad和A.F. hamzah 47硬度和干燥滑动磨损的表征功能分级的材料,采用离心a.m. Abdulmajeed和A.F. hamzah 57填充物和纤维类型对身体装甲复合材料的行为的影响。 Alhaddad,J.J。 Dawood和F.M. 穆罕默德69玻璃纤维和添加剂高岭土的聚苯乙烯加固的增强机械,热和介电特性。 Kareem,M.A.I。 Alqadoori和M.M. isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。 Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Alraziqi和Q.A.HAMAD 29通过用不同的硅烷偶联剂J.I.Abdulhameed,A.H。Ali和I.H.kara 39个人保护多层装甲的数值和实验研究A.Ehsan,A.O。Samarmad和A.F.hamzah 47硬度和干燥滑动磨损的表征功能分级的材料,采用离心a.m. Abdulmajeed和A.F.hamzah 57填充物和纤维类型对身体装甲复合材料的行为的影响。Alhaddad,J.J。 Dawood和F.M. 穆罕默德69玻璃纤维和添加剂高岭土的聚苯乙烯加固的增强机械,热和介电特性。 Kareem,M.A.I。 Alqadoori和M.M. isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。 Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Alhaddad,J.J。 Dawood和F.M.穆罕默德69玻璃纤维和添加剂高岭土的聚苯乙烯加固的增强机械,热和介电特性。 Kareem,M.A.I。Alqadoori和M.M. isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。 Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Alqadoori和M.M.isMail 79在轴向静态碎屑下使用天然和混合复合材料增强崩溃的可达参数。Albahash,M.J。Sharba和B.A. HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.Albahash,M.J。Sharba和B.A.HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能 Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S. 的兼容性表征 Saleem,M。Alzuhairi和N.A.H.HASAN 87纳米石墨烯K.A.增强聚合物的增强机械性能Handoul和A.A. Taher 99基于PMMA/DPET的聚合物混合D.S.Saleem,M。Alzuhairi和N.A.H.nassir 107使用纳米石墨烯洛杉矶MADI和A.S.改善纤维预压力复合材料的拉伸和弯曲性能Alithari 117
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
聚二甲基硅氧烷 (PDMS) 泡沫作为下一代聚合物泡沫材料之一,表面粘附性差且功能有限,极大地限制了其潜在应用。制备具有多种功能的先进 PDMS 泡沫材料仍然是一项关键挑战。在这项研究中,报道了前所未有的自粘性 PDMS 泡沫材料,该材料具有蠕虫状粗糙结构和反应性基团,用于通过简便的硅胶发泡和浸涂策略以及随后的硅烷表面改性来制造用 MXene/纤维素纳米纤维 (MXene/CNF) 互连网络装饰的多功能 PDMS 泡沫纳米复合材料。有趣的是,这种自粘性 PDMS 泡沫与混合 MXene/CNF 纳米涂层产生强的界面粘附力。因此,优化的PDMS泡沫纳米复合材料具有优异的表面超疏水性(水接触角≈159o)、可调的电导率(10-8至10Sm-1)、在宽温度范围(-20至200oC)和复杂环境(酸、钠和碱条件)中稳定的压缩循环可靠性、出色的阻燃性(LOI值> 27%且产烟率低)、良好的隔热性能和在各种应力模式和复杂环境条件下可靠的应变感应。它为合理设计和开发具有多功能性的先进PDMS泡沫纳米复合材料提供了新途径,可用于智能医疗监控和防火隔热等各种有前景的应用。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
含硅烷立场声明(rcgp.org.uk)•RCGP鼓励习惯继续治疗胆固醇高的患者,遵循脂质指南,重点关注所有可用选择,从生活方式变化和汀类药物开始:•我们鼓励升级的患者升级为高强度的毒素和ezetimibe,如果您可以启动•如果您启动•如果您要考虑的是,请考虑•考虑到所有人的选择,如果要考虑到所有人,请考虑•是否可以考虑使用,如果要考虑到任何选择,如果要考虑到任何选择,如果要考虑到任何选择,如果要考虑到任何选择。护理,或继续在其他地方作为决策者开出药物,您对处方•全部责任••因为含糖是一种黑色三角形药物▼,如果您决定在实现长期结局和安全数据之前确定其处方,请确保您:•与您的患者进行共同的新元素,并确保有新的和详细的确定性,并确保有新的良好的确定性,并有详细的预期,并在详细的范围内完成了良好的预期,并有效地进行了预期,并在详细范围内予以实现。 •鼓励您的患者向您报告所有副作用,无论多么少,确保您在向您报告时填写MHRA“黄牌”,并在最早的机会报告您自己的任何潜在的药物互动或您自己的疑虑•这种方法可以尽早确定任何但未知的问题,并帮助未来使用该药物,并在未来使用2026年的精神研究(
随着传感器技术的快速发展,摩洛电纳米生成器(TENGS)已成为智能电子产品的有前途的可持续电源。在此制造了一种新型的3-氨基丙基三乙氧基硅烷(CORE)和2,2-双(羟甲基)丁酸(单体)基于单体超支线聚酯的丁酸(单体)的超支聚酯,可通过便利的单步多粘密度技术(SI-HBP-G2)(SI-HBP-G2)。此外,SI-HBP-G2混合纤维混合物的新型聚偏二氟(PVDF)和不同的重量百分比(0、5、10、15和20 wt%)是由传统的静电纺织技术制备的。使用SEM/EDS,FTIR,NMR和XRD研究表征了准备的Si-HBP-G2及其混合物。使用铝(AL)作为计数器电极评估Si-HBP-G2含量对打开电路电势(V OC)和短路电流(I SC)的影响。其中,Si-HBP-G2/PVDF杂交垫(PG2-15)的15 wt%表现出卓越的电性能。几乎增加了5.9倍(22–130 V)的V OC和I SC的4.9倍(0.71–3.5μa),而不是PVDFFILEBER。这些结果揭示了Si-HBP-G2在底环式性能中的重要性。优化的TENG设备(PG2-15/al-Teng)在100mΩ外部负载下表现出0.2 wm-2的峰值密度。最后,PG2-15/al-Teng实际上展示了实时应用能源收集应用,例如为100个LED和秒表供电。