1 Institute of Micr obiology, Univ ersity of Gr eifswald, Gr eifswald, German y 2 Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany 3 Institute of Marine Biotechnology, 17489 Greifswald, Germany 4 Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt德国Helgoland,27498 Helgoland 5数学与计算机科学研究所,格雷夫斯瓦尔德大学,17489年,德国格里夫斯瓦尔德,6格雷夫斯瓦尔德大学,格雷夫斯特大学,17489年,德国格雷夫斯瓦尔德大学,德国格雷夫斯瓦尔德,德国,德国,Greifs Wald大学微生物学院,F Elix-Hausdorff-Straße8,17489 Greifswald,德国。电子邮件:mia.bengtsson@uni-greifsson.de编辑:[蒂尔曼·卢德斯(Tillmann Lueders)]
北极海冰硅藻从冬季黑暗到春天出现时为极地海洋食品网燃料。通过其光合活性,他们生产了二级生产的营养和能量。海冰硅藻丰度和生物分子组成在空间和时间上有所不同。随着气候变化的造成短期极端和环境条件的长期变化,了解硅藻如何和以环境扰动来调整生物分子商店,这对于深入了解未来的生态系统能源生产和营养转移至关重要。使用基于同步加速器的傅立叶变换红外微光谱镜检查,我们检查了五个主要的Sea-Ice硅硅硅硅硅硅质分类群的生物分子组成,来自陆上冰期冰群落,涵盖了春季春季,在挪威斯瓦尔巴德郡的春季,覆盖了一系列冰冰的光照条件。在所有五个分类单元中,当光传输到冰 - 水界面的光中,脂质和脂肪酸含量增加了一倍,> 5%,但<15%(通过雪和冰的衰减85%–95%)。我们确定了约15%的光透射率的阈值,此后生物分子合成稳定下来,这可能是由于光抑制效应,除了Navicula spp。继续积累脂质。增加冰的光的可用性导致对碳水化合物的能量分配增加,但这是脂质合成的继发性,而蛋白质含量保持稳定。可以预测,冰冰未能在北极的可用性会发生变化,由于海冰稀疏而增加,并且随着降雪量的较高而有可能减少。我们的发现表明,海冰硅藻的营养含量是特定于分类群的,并且与这些变化有关,强调了对极地海洋食品网的未来能源和养分供应的潜在影响。
内共生症在海洋环境中是一种广泛且在生态上具有重要意义的现象。这些内共生伙伴如何发展为具有新细胞器的有机体,仍然是未知的,需要调查现代共生体。dinotoms,具有进化中间硅质质体的dinoflagellates,被认为是研究细胞器发生的出色模型,因为它们在连续三个但不同的阶段保持了。努力了解宿主的鞭毛藻 - 结合硅藻的关系受到了共生的任何一个成员的遗传转化方法的限制。为了解决这种缺陷,我们修改了现有的硅藻生物和共轭转化方法和硅藻nitzschia captiva的冷冻保存方案,这是kleptoplastic dinotom dinotom dinotom dinotom dinotom duinotom durinskia capensis的重要猎物。Through the use of Phaeo dactylum tricornutum, Cylindrotheca fusiformis, and native Nitzschia captiva diatom designed plasmids, we suc cessfully express and target EGFP to the cytosol, mitochondria, and plastids of N. captiva, and visualize these organelles inside D. capensis in vivo, allowing specific labeling and tracking of摄入后的细胞器和蛋白质。此外,我们尝试利用CRISPR/CAS9来瞄准引入的EGFP基因,但找不到成功基因编辑的证据。
图 2 用于对光合微生物进行遗传工程改造的常见遗传转化技术示意图。 (A) 对于绿藻 (衣藻) 和真气藻 (微绿球藻):电穿孔和基因枪轰击可用于衣藻和微绿球藻的叶绿体靶向转化,而电穿孔或用玻璃珠涡旋可用于修饰衣藻的核基因组。细菌接合或农杆菌介导的转移也可用于将 DNA 引入这些细胞。 (B) 对于蓝藻:自然转化或接合可用于转移 DNA 以整合到染色体中或作为复制质粒。质粒也可以通过电穿孔转移。 (C) 对于硅藻:电穿孔和细菌接合是可用于将 DNA 引入硅藻的技术的例子。也可以使用农杆菌介导的转移或基因枪轰击
Xiahui Hao、Wenchao Chen、Alberto Amato、Juliette Jouhet、Eric Maréchal 等人。硅藻 Phaeodactylum tricornutum 中长链酰基辅酶 A 合成酶家族的多重 CRISPR/Cas9 编辑表明,线粒体 ptACSL3 参与了储存脂质的合成。New Phytologist,2022 年,233 (4),第 1797-1812 页。�10.1111/nph.17911�。�hal-03479559�
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
除了实验测量外,量子力学(QM)计算在评估和预测BDE值方面已经成为关键。新兴的计算方法用于自动枚举和探索反应机制的枚举和探索使用估计的BDE值,以识别众多可能性之间的能量有利路径。在0 K(d 0)的BDES综合计算中,可以实现10个高水平的精度。例如,CBS-QB3方法的平均误差(MAE)为0.58 kcal mol-l相对于小分子(例如硅藻,碳氢化合物和N,S,S,BE,LI和SI)的实验值的平均误差(MAE)。11,12然而,密度功能理论(DFT)计算对于较大的,构象上的thy-facible化合物而言更为实用,并且越来越多地用于计算BDES:13 M06-2X混合Meta-GGA函数可提供2.1 kcal mol - 1
海洋生态系统是我们星球上最大的水生生态系统,维持了整个世界生物多样性的近50%。海洋和陆地环境依赖于各种生态系统,例如潮间带,潮汐区,深海,珊瑚礁,盐沼,河口,河口,泻湖和红树林,这对于其可持续性至关重要。藻类是自养植物,主要生活在水中,并有许多不同类型的植物,从衣原体,小球藻和硅藻是单细胞生物的,到fucus和sargassum,它们是多细胞生物的。海洋藻类的分类包括两个主要类别:海洋微藻和海洋大藻类。海洋微藻,通常称为浮游植物,仅在使用显微镜的情况下观察到。海洋大型藻类,也称为海藻,水植物或水生植物,涵盖了所有类型的海洋藻类,它们在没有显微镜的无助的情况下是可观察到的(Ranjith等,2018)。
摘要B-千奇蛋白具有重要的生态和生理作用以及广泛应用的潜力,但是很少有来自B-奇异生产剂的差异相关酶的表征。针对Tara Oceans基因地图集的查询,在芽孢杆菌元转录组中发现了来自12个PFAM接收器的4,939个与丁氏蛋白相关的独特序列。假定的几丁质合酶(CHS)序列在甲壳类(39%),斯特雷默刺激(16%)和昆虫(14%)中降低,来自Tara Oceans Unigenes Unigenes Unigenes Unigenes Unigenes版本1 Metatranscrentsomes(Matouv1 1 T)数据库的昆虫(14%)。从模型diatom thalassiosira pseudonana(thaps3_j4413,指定为tp chs1)中的CHS基因被鉴定。海洋微生物真核生物转录组测序项目(MMETSP),Phycocosm和Plaza Diotom Omics数据集的TP CHS1的同源分析表明,Mediophyceae和thalassionemales物种是潜在的B -Chitin生产国。tp chs1在酿酒酵母和三角肌中过表达。在转基因P. tricornutum系中,TPCHS1- EGFP定位于高尔基体和质膜,并且在细胞分裂期间的裂解沟中主要可获得。增强的TP CHS1表达可以诱导异常的细胞形态并降低三角杆菌的生长速率,这可能归因于G2/M期的抑制。S.酿酒酵母被证明是表达大量活性TPCHS1的更好系统,在放射测定中,在放射测定中有效地不合适的UDP-N-乙酰葡萄糖胺。我们的研究扩大了有关海洋真核微生物中几丁质合酶分类分布的知识,并且是第一个集体表征活性海洋硅藻CHS的知识,该硅藻可能在细胞分裂过程中起重要作用。